Линейные уравнения первого порядка

Линейным дифференциальным уравнением первого порядка (ЛДУ) называется дифференциальное уравнение вида

$$y' + p(x)y = q(x), \tag{1}$$

где p(x), q(x) — непрерывные функции на интервале (a,b)

Уравнение

$$y' + p(x)y = 0 (2)$$

называется линейным однородным (ЛОДУ).

Построение общего решения. Начнем с ЛОДУ (2). Это уравнение является уравнение с разделяющимися переменными. Разделим переменные и проинтегрируем:

$$\frac{y'}{y} = -p(x), \ \left(\ln|y|\right)' = -p(x), \ \ln|y| = -P(x) + \tilde{C}, \ P$$
 — первообразная для p ;
$$y = Ce^{-P(x)} -$$
 (3)

общее решение ЛОДУ (2).

Для построения общего решения уравнения (1) можно применить метод вариации произвольной постоянной: решение будем искать в виде

$$y = C(x)e^{-P(x)}. (4)$$

Подставим (4) в (1):

$$C'e^{-P(x)} + Ce^{-P(x)}(-p(x)) + Ce^{-P(x)}p(x) = q(x);$$

Получим д.у. для неизвестной функции ${\it C}$:

$$C' = q(x)e^{P(x)}.$$

Интегрирование дает

$$C(x) = R(x) + C$$
 , $R(x)$ — первообразная для $q(x)e^{P(x)}$.

Наконец, формула

$$y = R(x)e^{-P(x)} + Ce^{-P(x)}$$
 (5)

дает общее решение ЛДУ (1).

В формуле (5) первое слагаемое — одно из решений (частное решение) ЛДУ (1), второе слагаемое — общее решение соответствующего ЛОДУ (2).

 3^{0} . **Метод интегрирующего множителя**. Умножим уравнение (1) на интегрирующий множитель $e^{P(x)}$:

$$y'e^{P(x)} + p(x)ye^{P(x)} = q(x)e^{P(x)},$$

$$(ye^{P(x)})' = q(x)e^{P(x)},$$

$$ye^{P(x)} = R(x) + C;$$

$$y = R(x)e^{-P(x)} + Ce^{-P(x)}$$
(5)

Уравнение Бернулли.

$$y' + p(x)y = q(x)y^{\alpha}, \ \alpha \neq 0; 1$$

Уравнение сводится к линейному.

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x),$$

$$z = y^{1-\alpha}, z' = (1-\alpha)y^{-\alpha}y',$$

$$\frac{1}{1-\alpha}z' + p(x)z = q(x).$$

Получено линейное уравнение для неизвестной функции z.

137.
$$(2x+1)y' = 4x+2y, x > -\frac{1}{2}$$
.

I). Решим сначала линейное однородное уравнение

$$(2x+1)y' = 2y,$$

$$\frac{y'}{y} = \frac{2}{2x+1}, \ln|y| = \ln|2x+1| + \ln C$$

$$y = C \cdot (2x+1)$$

Решение линейного однородного уравнения найдем методом вариации произвольной постоянной:

$$y = C(x)(2x+1),$$

$$(C' \cdot (2x+1) + 2C) \cdot (2x+1) = 4x + 2C \cdot (2x+1),$$

$$C' \cdot (2x+1)^2 = 4x,$$

$$C' = \frac{4x}{(2x+1)^2} = \frac{2}{2x+1} - \frac{2}{(2x+1)^2}, C(x) = \ln|2x+1| + \frac{1}{2x+1} + C,$$

$$y = (2x+1)\ln|2x+1| + 1 + C \cdot (2x+1).$$

II).
$$(2x+1)y' = 4x+2y$$
, $(2x+1)y'-2y = 4x$, $y'-\frac{2y}{2x+1} = \frac{4x}{2x+1}$

Умножим уравнение на интегрирующий множитель $e^{-\ln(2x+1)} = \frac{1}{2x+1}$.

$$\frac{y'}{2x+1} - \frac{2}{(2x+1)^2} y = \frac{4x}{(2x+1)^2},$$

$$\left(\frac{y}{2x+1}\right)' = \frac{4x}{(2x+1)^2},$$

$$\left(\frac{y}{2x+1}\right)' = \frac{2}{2x+1} - \frac{2}{(2x+1)^2},$$

$$\frac{y}{2x+1} = \ln|2x+1| + \frac{1}{2x+1} + C,$$

$$y = (2x+1)\ln|2x+1| + 1 + C \cdot (2x+1).$$

Otbet: $y = (2x+1)\ln|2x+1|+1+C\cdot(2x+1)$.

144.
$$xy' + (x+1)y = 3x^2e^{-x}$$
.

Умножим уравнение на e^x :

$$xy'e^{x} + (x+1)ye^{x} = 3x^{2},$$

$$(xye^{x})' = 3x^{2},$$

$$xye^{x} = x^{3} + C,$$

$$y = x^{2}e^{-x} + C\frac{e^{-x}}{x}.$$

Ответ:
$$y = x^2 e^{-x} + C \frac{e^{-x}}{x}$$

$$(2e^{y} - x)y' = 1,$$

$$\frac{dx}{dy} = 2e^{y} - x, \frac{dx}{dy} + x = 2e^{y}.$$

Получилось линейное уравнение для неизвестной функции x.

Умножим уравнение на интегрирующий множитель e^{y} :

$$\frac{dx}{dy}e^y + xe^y = 2e^{2y}.$$

$$\frac{d}{dy}(xe^y) = 2e^{2y}, xe^y = e^{2y} + C, x = e^y + Ce^{-y}.$$

Ответ: $x = e^y + Ce^{-y}$

151.
$$y' + 2y = y^2 e^x$$
.

Перед нами уравнение Бернулли. Разделим уравнение на y^2 :

$$\frac{y'}{y^2} + \frac{2}{y} = e^x.$$

Введем новую неизвестную функцию $z=rac{1}{v},z'=-rac{y'}{v^2}$.

Для функции z получаем уравнение

$$-z' + 2z = e^x, z' - 2z = -e^x.$$

Умножим уравнение на e^{-2x} :

$$z'e^{-2x} + 2ze^{-2x} = -e^{-x}$$
.

$$(ze^{-2x})' = -e^{-x}, ze^{-2x} = e^{-x} + C, z = e^{x} + Ce^{2x}.$$

OTBET:
$$\frac{1}{y} = e^x + Ce^{2x}$$
, $y = 0$.

Уравнение

$$y' + p(x)y + q(x)y^2 = r(x)$$

Называется уравнением Риккати. Если $y=\varphi(x)$ — одно из его решений, то замена $y=z+\varphi(x)$ приводит к уравнению Бернулли для неизвестной функции z .

169. $xy' - (2x+1)y + y^2 = -x^2$ — уравнение Риккати.

Подберем решение:

$$y = x$$
,
 $xy' - (2x+1)y + y^2 = x - (2x+1)x + x^2 = -x^2$.

y = x — решение уравнения.

Положим y = x + z:

$$x(1+z')-(2x+1)(x+z)+(x+z)^{2}=-x^{2},$$

$$x+xz'-2x^{2}-x-2xz-z+x^{2}+2xz+z^{2}=-x^{2},$$

$$xz'-z+z^{2}=0.$$

Получено уравнение Бернулли для неизвестной функции $\,z\,$. Разделим это уравнение на $\,z^2\,$:

$$x\frac{z'}{z^2} - \frac{1}{z} + 1 = 0.$$

Введем новую неизвестную функцию $u=\frac{1}{z}, u'=-\frac{z'}{z^2}$:

$$-xu'-u+1=0,$$

$$xu'+u-1=0,$$

$$(xu)'=1, xu=x+C, u=1+\frac{C}{x},$$

$$\frac{1}{z}=1+\frac{C}{x}=\frac{x+C}{x}, z=\frac{x}{x+C}; z=0$$

Ответ: $y = x + \frac{x}{x+C}$, y = x

Дифференциальные уравнения в полных дифференциалах. Интегрирующий множитель

1° . Определение

Дифференциальное уравнение

$$M(x, y)dx + N(x, y)dy = 0, (x, y) \in G$$
(1)

называется дифференциальным уравнением в полных дифференциалах, если

$$\exists F \ dF = Mdx + Ndy$$
 , T.e. $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial v} = N$.

Функция F называется первообразной для дифференциальной формы Mdx + Ndy .

2°. Общий интеграл. Для уравнения (1) соотношение

$$F(x,y) = C - \tag{2}$$

общий интеграл, решениями д.у. являются функции, удовлетворяющие уравнению (2).

Действительно,
$$y = \varphi(x)$$
 — решение (1) $\Leftrightarrow M(x, \varphi(x)) + N(x, \varphi(x))\varphi'(x) = 0 \Leftrightarrow (F(x, \varphi(x)))' = 0 \Leftrightarrow F(x, \varphi(x)) = const \Leftrightarrow y = \varphi(x)$ удовлетворяет равенству (2).

 ${\sf 3^0}.$ Признак уравнения в полных дифференциалах. Пусть функции $M,\,N\,$ непрерывно дифференцируемы.

Если (1) — д.у. в полных дифференциалах, то

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y} \,. \tag{3}$$

Определение. Область G называется односвязной, если для любой простой замкнутой кривой $\Gamma \subset G$ внутренность D является частью G .

Односвязность означает, что любой замкнутый путь в $\,G\,$ можно стянуть в точку.

В односвязной области условие (3) оказывается достаточным для того, чтобы уравнение (1) было дифференциальным уравнением в полных дифференциалах.

4⁰. Интегрирующий множитель

Функция μ называется интегрирующим множителем для д.у.

$$Mdx + Ndy = 0$$
,

если уравнение

$$\mu M dx + \mu N dy = 0$$
 —

уравнение в полных дифференциалах.

Отметим частные случаи, где интегрирующий множитель находится в виде функции одной переменной.

I Если
$$\dfrac{\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}}{N}=\psi\left(x
ight)$$
, то $\mu=h\left(x
ight)=e^{\Psi\left(x
ight)}$, где Ψ — первообразная для ψ .

II Если
$$\dfrac{\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}}{-M}=\psi\left(y\right)$$
 , то $\mu=h\left(y\right)=e^{\Psi\left(y\right)}$, где Ψ — первообразная для ψ .

ЗАДАЧИ

187.
$$(2-9xy^2)xdx + (4y^2 - 6x^3)ydy = 0$$

Найдем первообразную $F\left(x,y\right)$ для левой части уравнения. Находим F из системы

$$\begin{cases} \frac{\partial F}{\partial x} = 2x - 9x^2y^2\\ \frac{\partial F}{\partial y} = 4y^3 - 6x^3y \end{cases}$$

Из первого уравнения получаем

$$F = x^2 - 3x^3y^2 + \varphi(y)$$
.

Продифференцируем это равенство по y:

$$\frac{\partial F}{\partial y} = -6x^3y + \varphi'(y).$$

Сравнивая полученное выражение со вторым уравнением системы, получаем уравнение

$$\varphi'(y) = 4y^3,$$

в котором уже нет переменной x . Мы можем взять $\varphi(y) = y^4$. Искомая первообразная имеет вид

$$F(x,y) = x^2 - 3x^3y^2 + y^4$$
.

Ответ: $x^2 - 3x^3y^2 + y^4 = C$

190.
$$\frac{3x^2 + y^2}{y^2} dx - \frac{2x^3 + 5y}{y^3} dy = 0.$$

OTBET:
$$\frac{x^3}{y^2} + x + \frac{5}{y} = C$$
, $x^3 + xy^2 + 5y = Cy^2$

194.
$$\left(\frac{x}{\sin y} + 2\right) dx + \frac{\left(x^2 + 1\right)\cos y}{\cos 2y - 1} dy = 0$$

$$\left(\frac{x}{\sin y} + 2\right) dx - \frac{\left(x^2 + 1\right)\cos y}{2\sin^2 y} dy = 0$$

OTBET:
$$\frac{x^2+1}{2\sin y} + 2x = C$$

196.
$$(x^2 + y^2 + y)dx - xdy = 0$$

$$\left(1 + \frac{y}{x^2 + y^2}\right)dx - \frac{xdy}{x^2 + y^2} = 0$$

$$dx + \frac{ydx - xdy}{x^2 + y^2} = 0$$

$$x - \operatorname{arctg} \frac{y}{x} = C$$
, $\operatorname{arctg} \frac{y}{x} = x - C$, $\frac{y}{x} = \operatorname{tg}(x - C)$.

Ответ: $y = x \operatorname{tg}(x - C)$

199.
$$y^2 dx - (xy + x^3) dy = 0$$
.

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{2y + y + 3x^2}{-\left(xy + x^3\right)} = \frac{3\left(y + x^2\right)}{-x\left(y + x^2\right)} = -\frac{3}{x}.$$

Интегрирующий множитель имеет вид

$$\mu(x) = \frac{1}{x^3}.$$

Умножение дифференциального уравнения на этот множитель дает уравнение в полных дифференциалах

$$\frac{y^2}{x^3}dx - \left(\frac{y}{x^2} + 1\right)dy = 0.$$

Общий интеграл записывается в виде

$$\frac{y^2}{2x^2} + y = C.$$

При делении на $\,x^3\,$ мы потеряли решение $\,x=0$.

OTBET:
$$\frac{y^2}{2x^2} + y = C$$
, $x = 0$.

203.
$$y(x+y)dx + (xy+1)dy = 0$$

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{(x+2y) - y}{-y(x+y)} = \frac{x+y}{-y(x+y)} = -\frac{1}{y}$$

$$\mu = e^{-\ln y} = \frac{1}{y}$$

$$y(x+y)dx + (xy+1)dy = 0 \mid \frac{1}{y}$$

$$(x+y)dx + \left(x + \frac{1}{y}\right)dy = 0$$

$$x^2 + 2xy + 2\ln|y| = C$$

OTBET: $x^2 + 2xy + 2\ln|y| = C$, y = 0.

205.
$$(x^2 + 2x + y)dx = (x - 3x^2y)dy$$
.

$$(x^{2} + 2x + y)dx - (x - 3x^{2}y)dy = 0$$

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{1 + 1 - 6xy}{-(x - 3x^2y)} = \frac{2 - 6xy}{-(x - 3x^2y)} = -\frac{2(1 - 3xy)}{x(1 - 3xy)} = -\frac{2}{x}.$$

В ответ следует добавить решение x = 0.

Ответ:
$$x + 2 \ln |x| - \frac{y}{x} + \frac{3}{2} y^2 = C$$
, $x = 0$.

$$y(2x-1)dx-(x^2-y^2-x)dy=0$$
.

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{2x - 1 + 2x - 1}{-y(2x - 1)} = \frac{2(2x - 1)}{-y(2x - 1)} = -\frac{2}{y}.$$

Получаем интегрирующий множитель $\frac{1}{y^2}$.

Умножение дифференциального уравнения на этот множитель дает уравнение в полных дифференциалах

$$\frac{2x-1}{y}dx - \left(\frac{x^2}{y^2} - 1 - \frac{x}{y^2}\right)dy = 0.$$

Общий интеграл записывается в виде

$$\frac{x^2 - x}{y} - y = C.$$

OTBET:
$$\frac{x^2 - x}{y} - y = C$$
, $y = 0$.