Геометрические приложения определенного интеграла

Вычисление площадей

Найдите площади фигур, ограниченных кривыми, заданными в прямоугольных координатах.

2398.
$$y = x^2, x + y = 2$$
. OTBET: $\frac{9}{2}$

2406.
$$Ax^2 + 2Bxy + Cy^2 = 1$$
 $(A > 0, AC - B^2 > 0)$. OTBET: $\frac{\pi}{\sqrt{AC - B^2}}$

2407.
$$y^2 = \frac{x^3}{2a - x}$$
 (циссоида), $x = 2a$. ОТВЕТ: $3\pi a^2$

Найдите площади фигур, ограниченных кривыми, заданными

2414.
$$x = 2t - t^2$$
, $y = 2t^2 - t^3$. OTBET: $\frac{8}{15}$

Найдите площади фигур, ограниченных кривыми, заданными в полярных координатах.

2419.
$$r = a \left(1 + \cos \varphi \right)$$
 (кардиоида). ОТВЕТ: $\frac{3\pi a^2}{2}$

2422a).
$$r=\frac{p}{1+arepsilon\cos\varphi}~\left(0 (эллипс). ОТВЕТ: $\frac{\pi\,p^2}{\left(1-arepsilon^2\right)^{3/2}}$$$

2427.
$$x^4 + y^4 = a^2(x^2 + y^2)$$
. OTBET: $\pi a^2 \sqrt{2}$

Вычисление длин дуг

2431.
$$y = x^{3/2}, \ 0 \le x \le 4$$
. OTBET: $\frac{8}{27} (10\sqrt{10} - 1)$

2437.
$$y = \ln \cos x \left(0 \le x \le a < \pi / 2 \right)$$
. OTBET: $\ln tg \left(\frac{\pi}{4} + \frac{a}{2} \right)$

2443.
$$x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le 2\pi$$
. OTBET: 8a

Вычисление объемов

2456. Найдите объем чердака, основание которого есть прямоугольник со сторонами a и b , верхнее ребро равно c , а высота равна h . ОТВЕТ: $\frac{bh}{6}(2a+c)$

2462. Найдите объем тела, ограниченного поверхностями $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = \frac{c}{a}x, z = 0.$

OTBET:
$$\frac{2}{3}abc$$

Найдите объемы тел, ограниченных поверхностями, полученными при вращении отрезками следующих линий:

2473.
$$y=2x-x^2, y=0$$
: а) вокруг оси Ox ; б) вокруг оси Oy . ОТВЕТ: $\frac{16}{15}\pi$, $\frac{8}{3}\pi$.

2480.
$$x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le 2\pi, y = 0$$
: а) вокруг оси Ox ; б) вокруг оси Oy ; вокруг прямой $y = 2a$. ОТВЕТ: $5\pi^2a^3$; $6\pi^3a^3$; $7\pi^2a^3$

2483.2 а). Найдите объем тела, образованного вращением фигуры, заданной в полярных координатах:

$$\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$$
: а) вокруг оси Ox ; б) вокруг оси Oy ;

OTBET:
$$\frac{\pi a^3}{4} \left(\sqrt{2} \ln \left(1 + \sqrt{2} \right) - \frac{2}{3} \right); \frac{\pi^2 a^3}{4\sqrt{2}}$$

Вычисление площадей поверхностей вращения

Найдите площади поверхностей, образованных вращением следующих линий:

2490.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \left(0 < b \le a \right)$$
: a) вокруг оси Ox ; б) вокруг оси Oy . ОТВЕТ:

$$2\pi b^2 + 2\pi ab \frac{\arcsin \varepsilon}{\varepsilon}$$
; $2\pi a^2 + \frac{2\pi b^2}{\varepsilon} \ln \left(\frac{a}{b} (1+\varepsilon) \right)$

2492.
$$x^{2/3} + y^{2/3} = a^{2/3}$$
: вокруг оси Ox . ОТВЕТ: $\frac{12}{5}\pi a^2$

Домашнее задание

2397, 2404, 2413, 2418, 2426;

2440, 2444

2457, 2464, 2477, 2482.1, 2483.1;

2489, 2491