Лекция 9 28.10.2025

§ 7. Продолжение решений

10. Рассматривается дифференциальное уравнение

$$y' = f(x, y), \tag{1}$$

f непрерывна и удовлетворяет локально условию Липшица по y в области G . Таким образом, G — область единственности.

Определение.

Мы скажем, что решение $y=\varphi_1\left(x\right),\ x\in\Delta_1$ имеет своим продолжением решение $y=\varphi_2\left(x\right),\ x\in\Delta_2$, если $\Delta_1\subset\Delta_2$ и $\varphi_1=\varphi_2\Big|_{\Delta_1}$.

Замечание. Можно ограничиться рассмотрением решений, определенных на интервалах, поскольку с промежутка другого типа решение всегда можно распространить на более широкий интервал.

Пусть $y = \varphi_1(x)$, $x \in (a_1, b_1)$ и $y = \varphi_2(x)$, $x \in (a_2, b_2)$ — два решения задачи Коши для уравнения (1) с начальным условием

$$y\big|_{x_0} = y_0. \tag{2}$$

По теореме единственности $\varphi_1=\varphi_2$ на общей части интервалов $\left(a_1,\,b_1\right)$ и $\left(a_2,\,b_2\right)$. Функция

$$\varphi : \varphi(x) = \begin{cases} \varphi_1(x), & x \in (a_1, b_1), \\ \varphi_2(x), & x \in (a_2, b_2) \end{cases}$$

является решением задачи Коши и продолжает решения φ_1, φ_2 .

2⁰. Теорема 1.

Задача Коши (1), (2) имеет единственное непродолжимое решение, т.е. решение, которое является продолжением для любого решения.

Доказательство.

Рассмотрим совокупность всевозможных решений задачи Коши. Пусть Δ — объединение всех промежутков, на которых определяются решения. Ясно, что Δ — интервал, $\Delta = (a, b)$.

На (a,b) определим функцию φ . Если $x \in (a,b)$, то все решения, определенные в этой точке имеют общее значение, которое мы и объявим значением функции φ . Функция φ — решение задачи Коши. Оно является продолжением для любого решения.

Дополнение.

Можно доказать, что решение $y = \varphi(x)$, $x \in (a, b)$ непродолжимо вправо в том и только в том случае, если выполнено одно из условий:

1) $b = +\infty$, 2) $\varphi(x) \underset{x \to b-0}{\longrightarrow} \pm \infty$, 3) расстояние от $(x, \varphi(x))$ до границы области G бесконечно мало при $x \to b-0$.

3⁰. Теорема 2.

Пусть K — компакт, лежащий в области G . $y = \varphi(x)$, $x \in (a, b)$ — непродолжимое решение уравнение (1).

Тогда существуют такие числа $x_1, x_2 \in (a, b)$, что при $x < x_1$ и $x > x_2$ точка $(x, \varphi(x))$ лежит вне компакта K.

Доказательство. Установим существование числа x_2 .

Справедливость утверждения теоремы не вызывает сомнений, если $b = +\infty$. Рассмотрим случай конечного b.

Подберем число $\delta > 0$ так, чтобы компакт

$$K_1 = \{(x, y) | \rho((x, y), K) \le 2\delta\}$$

содержался в области G . Функция f ограничена на $K_1\colon \left|f\left(x,\,y\right)\right|\le M$.

Если $(\overline{x}, \overline{y}) \in K$, то квадрат $|x - \overline{x}| \le \delta, |y - \overline{y}| \le \delta$ содержится в K_1 . Положим $\eta = \min \left\{ \delta, \frac{\delta}{M} \right\}$

В теореме существования удалось построить решение на отрезке Пеано $\left[\overline{x}-\eta,\,\overline{x}+\eta\right]$.

Число $x_2 = b - \eta$ удовлетворяет условиям теоремы. В самом деле, если $(\overline{x}, \varphi(\overline{x})) \in K$ при некотором $\overline{x} > x_2$, то решение φ окажется определенным по крайней мере на интервале $(\overline{x} - \eta, \overline{x} + \eta)$. Поэтому $\overline{x} + \eta \le b$, вопреки выбору \overline{x} .

40. Теорема 3. (О непродолжимых решениях почти линейного уравнения)

Пусть функция f непрерывна и удовлетворяет условию Липшица по y в области $G = (a, b) \times (-\infty, +\infty)$. Для a, b допускаются значения $\pm \infty$. Предположим далее, что выполнено неравенство

$$|f(x,y)| \le A(x)|y| + B(x),$$

где A, B — непрерывные положительные функции.

Тогда всякое решение дифференциального уравнения (1) продолжается на интервал (a, b).

Доказательство. Пусть $y = \varphi(x), x \in (a_1, b_1)$ — непродолжимое решение. Покажем, что $b_1 = b$. Допустим $b_1 < b$. Выберем некоторую точку $x_0 \in (a_1, b_1)$. По теореме о дифференциальном неравенстве функция φ ограничена на $[x_0, b_1)$:

$$\left(\left| \varphi(x) \right| \le \left| \varphi(x_0) \right| e^{A_0(x-x_0)} + \frac{B_0}{A_0} \left(e^{A_0(x-x_0)} - 1 \right), \ A_0 = \max_{x \in [x_0, b_1]} \left| A(x) \right|, \ B_0 = \max_{x \in [x_0, b_1]} \left| B(x) \right| \right)$$

 $|\varphi(x)| \leq M$ при $x \in [x_0, b_1)$. По теореме 2 интегральная кривая $y = \varphi(x)$ должна покинуть компакт $[x_0, b_1] \times [-M, M]$, найдется такой $x \in [x_0, b_1]$, что $|\varphi(x)| > M$, вопреки выбору числа M.

Отметим существенность условия теоремы 3.

Пример. Ненулевые решения уравнения $y' = y^2$ не допускают продолжения на $(-\infty, +\infty)$.

Например, функция $y = -\frac{1}{x}$, $x \in (-\infty, 0)$ является непродолжимым решением.

§ 8 Гладкость решений

Мы продолжаем рассмотрение дифференциального уравнения

$$y' = f\left(x, y\right). \tag{1}$$

Каждое решение ϕ этого уравнения является непрерывно дифференцируемой функцией. Предположим, что функция f непрерывно дифференцируема. Тогда равенство

$$\varphi'(x) = f(x, \varphi(x))$$

влечет существование второй непрерывной производной функции φ :

$$\varphi''(x) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \varphi' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot f$$

Если функция f дважды непрерывно дифференцируема, то решение имеет непрерывные производные до третьего порядка включительно:

$$\varphi''' = \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} \cdot f + \frac{\partial^2 f}{\partial y^2} \cdot f^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot f \right)$$

Если функция f p раз непрерывно дифференцируема, то решение имеет непрерывные производные до (p+1)-го порядка включительно.

§ 9 Непрерывная зависимость решения от начальных условий и параметров

В реальных задачах начальные условия и правая часть дифференциального уравнения оказываются известными лишь в приближенном смысле. Хотелось бы надеяться, что малым изменениям начальных условий и правой части дифференциального уравнения соответствуют малые изменения решения.

Теорема 1 Зависимость решения от параметров

Пусть $f, \frac{\partial f}{\partial y}$ — непрерывные функции (трех переменных) в области $G \times (\alpha, \beta), (x_0, y_0) \in G$.

Поставим задачу Коши

$$y' = f\left(x, y, \mu\right),\tag{1}$$

$$y\big|_{x_0} = y_0 \tag{2}$$

Тогда решение $y=\varphi(x,\mu)$ задачи Коши (1), (2) непрерывно зависит от параметра μ : если для некоторого $\mu_0\in(\alpha,\beta)$ решение $y=\varphi(x,\mu_0)$ задачи Коши определено на отрезке $a,b \in (a,b)$, то для любого $a,b \in (a,b)$ найдется такое $a,b \in (a,b)$ и условию $a,b \in (a,b)$ и

$$\forall x \in [a, b] |\varphi(x, \mu) - \varphi(x, \mu_0)| < \varepsilon.$$

Замечание 1. Утверждение теоремы означает, в частности, что функция φ является непрерывной функцией двух переменных.

Замечание 2. Наличие непрерывной частной производной $\frac{\partial f}{\partial y}$ влечет за собой условие Липшица по y для любой компактной части K области G и отрезка $\left[\alpha_1,\beta_1\right]\subset\left(\alpha,\beta\right)$. Роль константы Липшица выполняет $L=\max_{(x,y)\in K,\mu\in\left[\alpha_1,\beta_1\right]}\left|\frac{\partial f}{\partial y}(x,y,\mu)\right|$.

Доказательство теоремы 1.

Мы должны показать, что для μ , близких к μ_0 , решение $y=\varphi(x,\mu)$ определяется на всем [a,b] и его график проходит в ε -коридоре

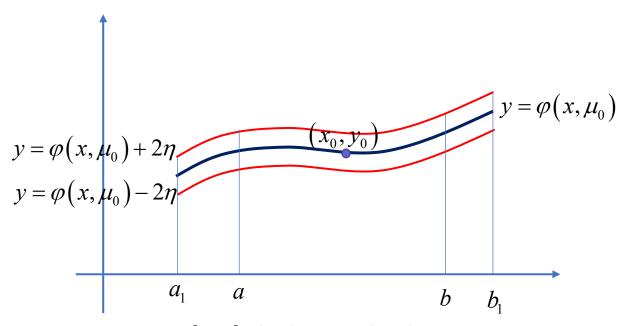
$$K = \{(x, y) : x \in [a, b], |y - \varphi(x, \mu_0)| \le \varepsilon\}$$

графика решения $y = \varphi(x, \mu_0)$.

Решение φ допускает продолжение с отрезка [a,b] на более широкий отрезок $[a_1,b_1]$, $(a_1,b_1)\supset [a,b]$.

Ограничимся изучением поведения решений на отрезке $[x_0,b]$. Возьмем произвольное $\varepsilon>0$. Подберем такое положительное $\eta<\varepsilon$, что компакт

$$K_1 = \{(x, y) : x \in [a_1, b_1], |y - \varphi(x, \mu_0)| \le 2\eta\} \subset G.$$



Подберем еще такой отрезок $[\alpha_1, \beta_1] \subset (\alpha, \beta)$, что $\mu_0 \in (\alpha_1, \beta_1)$. Через L обозначим постоянную Липшица для компакта

$$E = K_1 \times [\alpha_1, \beta_1] \subset G \times (a, \beta).$$

Рассмотрим сужение д.у. (1) на область $G_1 \times (\alpha_1, \beta_1)$ — внутренность компакта E.

Зафиксируем некоторое $\mu \in (\alpha_1, \beta_1)$ и рассмотрим непродолжимое решение

$$y = \varphi(x, \mu), x \in (a_2, b_2)$$
 д.у. (1) на области $G_1 \times (\alpha_1, \beta_1)$.

Для x, лежащих в общей части промежутков $\left[x_{\scriptscriptstyle 0},\,b_{\scriptscriptstyle 1}\right]$ и $\left[x_{\scriptscriptstyle 0},b_{\scriptscriptstyle 2}\right)$

$$\varphi'(x,\mu) = f(x,\varphi(x,\mu),\mu),$$

$$\varphi'(x,\mu_0) = f(x,\varphi(x,\mu_0),\mu_0),$$

$$\varphi'(x,\mu)-\varphi'(x,\mu_0)=f(x,\varphi(x,\mu),\mu)-f(x,\varphi(x,\mu_0),\mu_0),$$

$$\begin{split} & \left| \phi'(x,\mu) - \phi'(x,\mu_0) \right| \leq \left| f\left(x,\,\phi(x,\mu),\mu\right) - f\left(x,\,\phi(x,\mu),\mu_0\right) \right| + \left| f\left(x,\,\phi(x,\mu),\mu_0\right) - f\left(x,\,\phi(x,\mu_0),\mu_0\right) \right| \\ & \left| \phi'(x,\mu) - \phi'(x,\mu_0) \right| \leq L \left| \phi(x,\mu) - \phi(x,\mu_0) \right| + B(\mu), \, \text{где } B(\mu) = \max_{(x,y) \in K_1} \left| f\left(x,y,\mu\right) - f\left(x,y,\mu_0\right) \right|. \end{split}$$

Поскольку функция f равномерно непрерывна на компакте E , то $B(\mu) \underset{u \to u_0}{\longrightarrow} 0$.

По лемме о дифференциальном неравенстве при $x \in [x_0, b_1] \cap [x_0, b_2)$

$$\left|\varphi(x,\mu)-\varphi(x,\mu_0)\right| \leq \frac{B(\mu)}{L} \left(e^{L(x-x_0)}-1\right) \leq \frac{B(\mu)}{L} \left(e^{L(b-x_0)}-1\right) \underset{\mu\to\mu_0}{\longrightarrow} 0.$$

Подберем $\sigma>0$ так, чтобы при $|\mu-\mu_0|<\sigma$ правая часть последнего неравенства была меньше η . Тогда при $x\in [x_0,b]\cap [x_0,b_2)$

$$|\varphi(x,\mu)-\varphi(x,\mu_0)|<\eta$$
.

График непродолжимого решения $y = \varphi(x, \mu), x \in (a_2, b_2)$ должен покинуть компакт

$$K = \{(x, y) : x \in [a, b], |y - \varphi(x, \mu_0)| \le \eta \}.$$

Если допустить, что $b_2 \leq b$, то график должен уйти из K через верхнюю или нижнюю границу, найдется такой $x \in (x_0,b)$, что $(x,\varphi(x,\mu)) \notin K$, $|\varphi(x,\mu)-\varphi(x,\mu_0)| > \eta$, что невозможно. Таким образом, решение $\varphi(x,\mu)$ определяется по крайней мере на $[x_0,b]$ и отклоняется на этом отрезке от графика φ меньше, чем на $\eta < \varepsilon$.

Теорема 2 Зависимость решения от начальных данных

Пусть задача Коши для дифференциального уравнения

$$y' = f(x, y) \tag{1}$$

(f , $\frac{\partial f}{\partial y}$ непрерывны в области G) с начальным условием

$$y|_{x_0} = y_0,$$
 (2)

имеет решение $y = \varphi(x), x \in [a, b]$ ($x_0 \in (a, b)$).

Для $(\tilde{x}_0, \tilde{y}_0) \in G$ через $y = \varphi(x, \tilde{x}_0, \tilde{y}_0)$ обозначим решение с начальным условием $(\tilde{x}_0, \tilde{y}_0)$. (Заметим, что $\varphi(x, x_0, y_0) = \varphi(x)$).

Тогда φ — непрерывная функция трех переменных.

Для любого $\varepsilon>0$ найдется такое $\delta>0$, что для всех $\left(\tilde{x}_0,\,\tilde{y}_0\right)\in G$, удовлетворяющих условию $\left|\tilde{x}_0-x_0\right|<\delta,\,\left|\tilde{y}_0-y_0\right|<\delta$, решение задачи Коши с начальным условием $\left.y\right|_{\tilde{x}_0}=\tilde{y}_0$ тоже определяется на отрезке $\left[a,\,b\right]$ и

$$\forall x \in [a, b] |\varphi(x, \tilde{x}_0, \tilde{y}_0) - \varphi(x, x_0, y_0)| < \varepsilon.$$

Доказательство.

1) Пусть сначала $\tilde{x}_0 = x_0$. Как и в Теореме 1, решение $y = \varphi(x)$ продолжается на отрезок $[a_1,b_1]$. Мы должны показать, что решение $y = \varphi(x,\tilde{y}_0)$ определяется на всем отрезке [a,b] и его график не выходит из ε -коридора

$$K = \{(x, y) : x \in [a, b], |y - \varphi(x)| \le \varepsilon\}.$$

Можно считать, что

$$K_1 = \{(x, y) : x \in [a_1, b_1], |y - \varphi(x)| \le 2\varepsilon\} \subset G$$

(в противном случае можно уменьшить ε).

Рассматриваем сужение уравнения (1) на область G_1 — внутренность компакта K_1 . L — постоянная Липшица для области G_1 .

Пусть $(x_0, \tilde{y}_0) \in G_1$, $y = \varphi(x, \tilde{y}_0)$, $x \in (a_2, b_2)$ — непродолжимое решение д.у. (1) в области G_1 .

Для $x \in [x_0, b_1] \cap [x_0, b_2)$ можем написать

$$\varphi'(x) = f(x, \varphi(x)),$$

$$\varphi'(x, \tilde{y}_0) = f(x, \varphi(x, \tilde{y}_0)),$$

$$\varphi'(x, \tilde{y}_0) - \varphi'(x) = f(x, \varphi(x, \tilde{y}_0)) - f(x, \varphi(x)),$$

$$|\varphi'(x, \tilde{y}_0) - \varphi'(x)| \le L |\varphi(x, \tilde{y}_0) - \varphi(x)|.$$

По лемме о дифференциальном неравенстве при $x \in [x_0, b_1] \cap [x_0, b_2)$

$$|\varphi(x, \tilde{y}_0) - \varphi(x)| \le |\tilde{y}_0 - y_0| e^{L(x-x_0)} \le |\tilde{y}_0 - y_0| e^{L(b-x_0)} \underset{\tilde{y}_0 \to y_0}{\longrightarrow} 0.$$

Подберем $\delta > 0$ так, чтобы неравенство

$$\left|\tilde{y}_0 - y_0\right| e^{L(b - x_0)} < \varepsilon$$

выполнялось всякий раз, когда $\left| \tilde{y}_{\scriptscriptstyle 0} - y_{\scriptscriptstyle 0} \right| < \delta$.

График решения $y = \varphi(x, \tilde{y}_0), x \in (a_2, b_2)$ должен покинуть компакт K. Выход возможен только через правую границу, поэтому $b_2 > b$, т.е. решение $y = \varphi(x, \tilde{y}_0), x \in (a_2, b_2)$ определяется на всем отрезке [a,b] и его график проходит в ε -коридоре решения $y = \varphi(x)$:

$$\forall x \in [a, b] | \varphi(x, \tilde{y}_0) - \varphi(x) | \le \varepsilon.$$

2) Если точка $(\tilde{x}_0,\,\tilde{y}_0)$ близка к $(x_0,\,y_0)$, то решение с начальным условием $(\tilde{x}_0,\,\tilde{y}_0)$ определено в точке x_0 и принимает в этой точке значение $\tilde{\tilde{y}}_0$, близкое к y_0 . Уточним последнюю фразу.

По данному на $\varepsilon > 0$ подберем $\delta_0 > 0$ в соответствии с пунктом 1).

Можно считать, что замкнутый квадрат Π_0 с центром (x_0, y_0) и стороной $2\delta_0$ лежит в области G .

Положим $\delta = \frac{\delta_0}{M+2}$, где $M = \max_{(x, y) \in \Pi_0} \left| f\left(x, y\right) \right|$.

Пусть $|\tilde{x}_0 - x_0| < \delta$, $|\tilde{y}_0 - y_0| < \delta$, тогда в Π_0 содержится квадрат Π_1 с центром $(\tilde{x}_0, \, \tilde{y}_0)$ и стороной $2\delta_1$, $\delta_1 = \delta_0 - \delta = \frac{(M+1)\delta_0}{M+2}$.

Решение задачи Коши с начальным условием $(\tilde{x}_0,\,\tilde{y}_0)$ определяется по крайней мере на отрезке $|x-\tilde{x}_0| \leq \min\left\{\delta_1,\,\frac{\delta_1}{M}\right\}$, тем более на интервале $|x-\tilde{x}_0| < \frac{\delta_1}{M+1} = \delta$, в частности, оно определено в точке x_0 . Положим $\tilde{\tilde{y}}_0 = \varphi(x_0,\,\tilde{x}_0,\,\tilde{y}_0)$. Функция $y = \varphi(x,\,\tilde{x}_0,\,\tilde{y}_0)$ может рассматриваться как решение с начальным условием $\left(x_0,\,\tilde{\tilde{y}}_0\right)$. Но $\left|\tilde{\tilde{y}}_0-\tilde{y}_0\right| \leq M \left|x_0-\tilde{x}_0\right| < M \delta$, так что $\left|\tilde{\tilde{y}}_0-y_0\right| < (M+1) \delta < \delta_0$.

Следовательно, решение $y = \varphi(x, \tilde{x}_0, \tilde{y}_0)$ определено на всем [a, b] и

$$\forall x \in [a, b] \left| \varphi(x, \tilde{x}_0, \tilde{y}_0) - \varphi(x, x_0, y_0) \right| < \varepsilon.$$