Лекции 8 - 9 27.09-01.10.2024

Глава II. Предел функции

§ 1. Понятие предела функции

10. Предельная точка.

Пусть $E \subset \mathbb{R}$, $a \in \mathbb{R}$. Точка a называется предельной для множества E , если

$$\forall \varepsilon > 0 \ \exists x \in E \ 0 < |x - a| < \varepsilon$$
.

На языке окрестностей это означает, что любая окрестность V точки a содержит точки множества E , отличные от a .

Если V — окрестность точки a , то $\dot{V} = V \setminus \{a\}$ называют проколотой окрестностью. Теперь можно сказать, что a — предельная точка для E , если для любой окрестности V точки a проколотая окрестность \dot{V} пересекается с E , $\dot{V} \cap E \neq \varnothing$.

20. Определение. Предел функции

Пусть $E \subset \mathbb{R}$, $a \in \mathbb{R}$ — предельная точка для множества E ; f — функция, определенная на E .

1) Определение на языке $\,arepsilon - \delta\,$

Число A называется пределом функции f в точке a (или при $x \to a$) вдоль множества E , если для любого $\varepsilon > 0$ можно указать такое $\delta > 0$, что неравенство $\left| f\left(x\right) - A \right| < \varepsilon$ выполняется всякий раз, когда $x \in E$ и $0 < \left| x - a \right| < \delta$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

2) Определение на языке окрестностей

Число A называется пределом функции f в точке a , если для любой окрестности V точки A существует окрестность U точки a , для которой справедливо включение $f\left(\dot{U}\cap E\right)\subset V$.

3) Определение на языке последовательностей

Число A называется пределом функции f в точке a , если для любой последовательности $\{x_n\},\ x_n\in E,\ x_n\neq a,\ x_n\underset{n\to\infty}{\longrightarrow}a$ справедливо соотношение $f\left(x_n\right)\underset{n\to\infty}{\longrightarrow}A$.

Если A — предел функции f в точке a , то пишут $f(x) \underset{x \to a, x \in E}{\longrightarrow} A$, $A = \lim_{x \to a, x \in E} f(x)$.

Как правило, мы будем рассматривать ситуацию, где функция определена, по крайней мере, в некоторой проколотой окрестности точки a . В такой обстановке указание множества E становится необязательным, мы пишем просто $\lim_{x\to a}f\left(x\right)$.

Пример

Для существования предела функция вовсе не обязана быть определенной в точке a. Если же в этой точке функция определена, то значение f(a) не влияет на предел.

Если
$$f(x) = 1$$
 при $x \neq 3$, а $f(3) = 2$, то $\lim_{x \to 3} f(x) = 1 \neq f(3)$.

Существование и значение предела полностью определяется поведением функции в любой проколотой окрестности точки a. Если функции $f,\,g$ совпадают в некоторой проколотой окрестности U точки a, то они имеют или не имеют предела одновременно, в случае существования пределы между собой равны.

30. Теорема 1. Равносильность определений.

Определения 1), 2), 3) равносильны. Если $A = \lim_{x \to a} f(x)$ в смысле одного из определений, то $A = \lim_{x \to a} f(x)$ и в смысле других определений.

Доказательство

Сначала сравним определения 1), 2).

Пусть $A=\lim_{x\to a}f\left(x\right)$ в смысле 1). Возьмем произвольную окрестность V точки A . Найдется такое $\varepsilon>0$, что $V_{\varepsilon}\left(A\right)\subset V$. По определению 1) существует такое $\delta>0$, что

$$x \in E, x \neq a, |x-a| < \varepsilon \Rightarrow |f(x)-A| < \varepsilon.$$

Полагая $U=V_{_{\mathcal{S}}}\!\left(a\right)$, можно переписать предыдущее соотношение в виде $f\left(\dot{U}\cap E\right)\!\subset\!V_{_{\mathcal{E}}}\!\left(A\right)\!\subset\!V$. Таким образом, $A=\lim_{x\to a}f\left(x\right)$ в смысле 2).

Наоборот, пусть $A=\lim_{x\to a}f\left(x\right)$ в смысле 2). Возьмем произвольное $\varepsilon>0$ и положим $V=V_{\varepsilon}\left(A\right)$. По определению 2) найдется окрестность U точки a , для которой $f\left(\dot{U}\cap E\right)\subset V$. Подберем $\delta>0$, для которого $V_{\delta}\left(a\right)\subset U$. Теперь

$$\forall x \in E \ 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$
,

 $A = \lim_{x \to a} f(x)$ в смысле 1). Установлена равносильность определений 1), 2).

Докажем равносильность определений 1), 3).

Пусть $A = \lim_{x \to a} f\left(x\right)$ в смысле 1). Возьмем произвольную последовательность

$$\{x_n\}, x_n \neq a, x_n \xrightarrow[n \to \infty]{} a$$

и убедимся в том, что $f\left(x_{_{n}}\right) {\underset{_{n \to \infty}}{\longrightarrow}} A$.

Возьмем произвольное $\, arepsilon > 0 \, .$ По определению 1) найдется такое $\, \delta > 0 \,$, что

$$\forall x \in E \ 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$
.

По определению предела последовательности найдется номер $\,N\,$, для которого

$$n > N \Longrightarrow |x_n - a| < \delta$$
 , при этом $x_n \neq a$.

Видим, что при n>N выполняется соотношение $\left|f\left(x_n\right)-A\right|<arepsilon$. Итак, $f\left(x_n\right)\underset{n\to\infty}{\longrightarrow} A$. $A=\lim_{x\to a}f\left(x\right)$ в смысле 3).

Пусть $A = \lim_{x \to a} f\left(x\right)$ в смысле 3). Допустим, A не является пределом в смысле 1). Тогда

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in E \ 0 < \left| x - a \right| < \delta \ \left| f \left(x \right) - A \right| \ge \varepsilon \ .$$

В качестве $\delta > 0$ последовательно возьмем числа $\frac{1}{n}, \; n = 1, \; 2, \; \dots \;$ и найдем точки

 $x_n \in E \ 0 < \left| x_n - a \right| < \frac{1}{n}, \ \left| f\left(x_n\right) - A \right| \ge \varepsilon$. Тем самым мы получаем последовательность $\left\{x_n\right\}$.

Неравенство $\left|x_n-a\right|<\frac{1}{n}$ означает, что $x_n\underset{n\to\infty}{\longrightarrow}a$, а неравенство $\left|f\left(x_n\right)-A\right|\geq \varepsilon$ говорит, что A не является пределом для $\left\{f\left(x_n\right)\right\}$, вопреки предположению. Полученное противоречие заставляет нас признать, что $A=\lim_{x\to a}f\left(x\right)$ в смысле 1).

§ 2 Различные предельные конструкции

10. Односторонние пределы

1) Пусть f определена на некотором интервале $(a-\delta_0, a)$.

Число A называется левосторонним пределом функции f в точке a

$$(A = f(a-0), A = \lim_{x \to a-0} f(x), f(x) \underset{x \to a-0}{\longrightarrow} A)$$
, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ a - \delta < x < a \Rightarrow |f(x) - A| < \varepsilon$$
.

2) Пусть f определена на некотором интервале $(a, a + \delta_0)$.

Число A называется правосторонним пределом функции f в точке a

$$(A = f(a+0), A = \lim_{x \to a+0} f(x), f(x) \underset{x \to a+0}{\longrightarrow} A)$$
, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ a < x < a + \delta \Rightarrow |f(x) - A| < \varepsilon.$$

Определения односторонних пределов можно дать и в терминах окрестностей или последовательностей.

Предложение

Функция f определена в проколотой окрестности точки a .

Тогда функция имеет предел в точке a в том и только в том случае, если существуют и равны между собой односторонние пределы $f\left(a-0\right)=f\left(a+0\right)$. В случае существования предела

$$f(a-0) = f(a+0) = \lim_{x \to a} f(x).$$

20. Бесконечные пределы

В определении предела число A можно заменить на $+\infty, -\infty, \infty$. Например,

$$f(x) \xrightarrow[x \to a]{} -\infty \Leftrightarrow \forall E > 0 \exists \delta > 0 \ 0 < |x - a| < \delta \Rightarrow f(x) < -E.$$

30. Пределы на бесконечности

Бесконечности могут выполнять и роль точки, в которой вычисляется предел. Например,

$$f(x) \to \infty \Leftrightarrow \forall E > 0 \exists \Delta > 0 \ x > \Delta \Rightarrow |f(x)| > E$$
.

§ 3 Простейшие свойства предела функции

- 1°. Если функция постоянна в некоторой проколотой окрестности точки a , f(x) = A при $x \in \dot{V}$, то $f(x) \xrightarrow[x \to a]{} A$.
- 2⁰. Предел единствен.
- 3^{0} . Если функция имеет конечный предел, то она ограничена в некоторой проколотой окрестности.

§ 4. Предел и арифметические операции

Теорема 1

Пусть функции f, g определены в проколотой окрестности E точки a .

$$f(x) \underset{x \to a}{\longrightarrow} A, \ g(x) \underset{x \to a}{\longrightarrow} B.$$

Определим функции

$$F: F(x) = f(x) + g(x), x \in E;$$

 $G: G(x) = f(x)g(x), x \in E;$
 $H: H(x) = f(x)/g(x), x \in E.$

(В последнем случае предполагаем, что $g(x) \neq 0$ при $x \in E$).

Тогда функции F, G, H тоже имеют пределы,

$$F(x) \underset{x \to a}{\longrightarrow} A + B, G(x) \xrightarrow{} AB, H(x) \xrightarrow{} A/B$$

(последнее при условии $B \neq 0$).

Доказательство

Докажем, например, последнее утверждение.

Возьмем произвольную последовательность $\left\{x_n\right\},\ x_n\in E,\ x_n\neq a,\ x_n\underset{n\to\infty}{\longrightarrow}a$. По определению предела функции на языке последовательностей

$$f(x_n) \underset{n \to \infty}{\longrightarrow} A, \ g(x_n) \underset{n \to \infty}{\longrightarrow} B.$$

По теореме о пределе отношения последовательностей $H\left(x_{n}\right)\underset{n\to\infty}{\longrightarrow}\frac{A}{B}$. Опять по определению предела функции $H\left(x\right)\underset{x\to a}{\longrightarrow}\frac{A}{B}$.

§ 5. Предел и неравенства

Теорема 1

Пусть функции $f,\ g$ определены в проколотой окрестности E точки a .

1) Стабилизация неравенств

Пусть

$$f(x) \underset{x \to a}{\longrightarrow} A, \ g(x) \underset{x \to a}{\longrightarrow} B, \ A < B.$$

Тогда

$$\exists U \ \forall x \in \dot{U} \ f(x) < g(x)$$

2) Предельный переход в неравенстве.

Пусть

$$\forall x \in E \ f(x) \leq g(x)$$
,

$$f(x) \xrightarrow{x \to a} A, g(x) \xrightarrow{x \to a} B.$$

Тогда

$$A \leq B$$
.

Замечание. Можно ослабить условие и потребовать выполнения неравенства $f(x) \le g(x)$ в некоторой проколотой окрестности точки a.

3) Теорема о полицейских.

Если

$$\forall x \in E \ f(x) \le h(x) \le g(x)$$

$$f(x) \xrightarrow{x \to a} A, g(x) \xrightarrow{x \to a} A,$$

то

$$h(x) \underset{x \to a}{\longrightarrow} A$$
.

Доказательство

1) Рассмотрим окрестности $V_{\scriptscriptstyle A} = \left(-\infty,\, \frac{A+B}{2}\right)$ и $V_{\scriptscriptstyle B} = \left(\frac{A+B}{2},\, +\infty\right)$ точек A и B

соответственно. На основании определения предела мы можем найти такую окрестность U точки a , что при $x \in \dot{U}$ справедливы включения $f\left(x\right) \in V_{A}$ и $g\left(x\right) \in V_{B}$. U — искомая окрестность.

(Поскольку из
$$f(x) \in V_A$$
 следует, что $f(x) < \frac{A+B}{2}$, а $g(x) \in V_B$ влечет $g(x) > \frac{A+B}{2}$, то $f(x) < g(x)$).

2) Утверждение о предельном переходе в неравенстве доказывается, как и в случае последовательностей, методом от противного.

Допустив, что имеет место неравенство A>B , мы придем к противоречащему условию выводу о том, что в пределах некоторой проколотой окрестности точки a выполняется неравенство $f\left(x\right)>g\left(x\right)$.

3) Возьмем произвольную последовательность $\left\{x_n\right\},\ x_n \neq a,\ x_n \underset{n \to \infty}{\longrightarrow} a$.

По определению предела на языке последовательностей получаем соотношения $f\left(x_n\right)\underset{n\to\infty}{\longrightarrow}A,\ g\left(x_n\right)\underset{n\to\infty}{\longrightarrow}A$, а по условию $f\left(x_n\right)\le h(x_n)\le g\left(x_n\right),\ n=1,2,\ldots$ По теореме о полицейских для последовательностей $h\left(x_n\right)\underset{n\to\infty}{\longrightarrow}A$. Пользуясь опять определением на языке последовательностей, делаем вывод, что $h(x)\underset{r\to a}{\longrightarrow}A$.

§ 6. Бесконечно малые и бесконечно большие функции

10. Определение

Функция lpha называется бесконечно малой при x
ightharpoonup a , если $lpha(x) {\displaystyle \mathop{
ightharpoonup}\limits_{x
ightharpoonup a}} 0$.

20. Теорема 1.

- 1) Сумма бесконечно малых является бесконечно малой.
- 2) Произведение бесконечно малой на ограниченную функцию является бесконечно малой.

30. Теорема 2. Определение предела в терминах бесконечно малых

$$f(x) \underset{x \to a}{\longrightarrow} A \iff \alpha = f - A - \text{ 6.m.}$$

40. Бесконечно большие функции

Функция f называется бесконечно большой ($f\left(x\right)\underset{x \to a}{\longrightarrow} \infty$), если

$$\forall E > 0 \exists \delta > 0 \ 0 < |x - a| < \delta \Rightarrow |f(x)| > E.$$

Теорема 3.

$$\alpha$$
 – б.м. \Leftrightarrow $f = \frac{1}{\alpha} - \delta.\delta$.

§ 7. Сравнение функций (бесконечно малых)

10. Определение

Пусть функции α , β определены в некоторой проколотой окрестности точки a, β не обращается в 0 ни в одной точке.

1) Говорят что α , β одного порядка при $x \rightarrow a$, если

$$\frac{\alpha(x)}{\beta(x)} \underset{x \to a}{\longrightarrow} A \neq 0, \infty.$$

Для бесконечно малых функций α , β в этом случае говорят, что функция α и β одного порядка малости.

2) α , β эквивалентны при $x \to a$, $\alpha(x) {\underset{x \to a}{\sim}} \beta(x)$, если

$$\frac{\alpha(x)}{\beta(x)} \underset{x \to a}{\longrightarrow} 1.$$

Замечание. В условиях пункта 1) $\alpha(x) \underset{x \to a}{\sim} A\beta(x)$.

3) Функция α называется бесконечно малой по сравнению с β , $\alpha(x) = o(\beta(x))$ (α есть омалое от β), если

$$\frac{\alpha(x)}{\beta(x)} \underset{x \to a}{\longrightarrow} 0.$$

Для бесконечно малых функций α , β в этом случае говорят, что функция α имеет более высокий порядок малости, чем β .

В смысле принятого определения запись $\, \alpha = o(1) \,$ означает бесконечную малость функции $\, lpha \,$.

4) $\alpha = \underset{x \to a}{=} \mathrm{O}(\beta)$, если $\frac{\alpha}{\beta}$ ограничено в некоторой проколотой окрестности точки a .

Примеры. $x + 2x^2 \sim x$, $x^2 = o(x)$.

20. Определение

- 1) Если $\alpha(x) \sim A(\beta(x))^k$, то говорят, что α имеет k -й порядок относительно β .
- 2) Если $\alpha(x) {\underset{x \to a}{\sim}} A(x-a)^k$, то α имеет k -й порядок малости, функция $A(x-a)^k$ называется главной частью б.м. α . (Для случая $x \to \infty$ роль основной б.м. выполняет функция $\frac{1}{x}$, функция $\alpha(x) {\underset{x \to \infty}{\sim}} \frac{A}{x^k}$ имеет k -й порядок малости, имеет $\frac{A}{x^k}$ своей главной частью).

30. Теорема 1

При вычислении пределов сомножители можно заменять на эквивалентные.

Пусть
$$\alpha(x) \sim \alpha_1(x)$$
, $\beta(x) \sim \beta_1(x)$.

Тогда

1) Если
$$\frac{\alpha_1(x)}{\beta_1(x)} \xrightarrow{x \to a} A$$
 , то $\frac{\alpha(x)}{\beta(x)} \xrightarrow{x \to a} A$.

2) Если
$$\alpha_1(x)\beta_1(x) {\underset{x \to a}{\to}} A$$
 , то $\alpha(x)\beta(x) {\underset{x \to a}{\to}} A$.

3)
$$\frac{\alpha(x)}{\beta(x)} \sim \frac{\alpha_1(x)}{\beta_1(x)}$$
.

4)
$$\alpha(x)\beta(x) \underset{x\to a}{\sim} \alpha_1(x)\beta_1(x)$$
.

Доказательство.

1)
$$\frac{\alpha(x)}{\beta(x)} = \frac{\alpha_1(x)}{\beta_1(x)} \frac{\alpha(x)}{\alpha_1(x)} \frac{\beta_1(x)}{\beta(x)} \xrightarrow{x \to a} A \cdot 1 \cdot 1 = A$$
.

4)
$$\frac{\alpha(x)\beta(x)}{\alpha_1(x)\beta_1(x)} = \frac{\alpha(x)}{\alpha_1(x)} \frac{\beta(x)}{\beta_1(x)} \xrightarrow{x \to a} 1 \cdot 1 = 1.$$

40. Теорема 2. Условие эквивалентности.

$$\alpha \sim \beta \Leftrightarrow \alpha - \beta = o(\beta)$$

 $\alpha = \beta + o(\beta)$

Доказательство.

$$\alpha \sim \beta \Leftrightarrow \frac{\alpha}{\beta} \to 1 \Leftrightarrow \frac{\alpha}{\beta} - 1 \to 0 \Leftrightarrow \frac{\alpha - \beta}{\beta} \to 0 \Leftrightarrow \alpha - \beta = o(\beta).$$

50. Таблица эквивалентных б.м.

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\sin x \underset{x \to 0}{\sim} x$	$\sin x = x + o(x)$
$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$	$ \operatorname{tg} x \underset{x \to 0}{\sim} x $	$\operatorname{tg} x = x + O(x)$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$1 - \cos x \underset{x \to 0}{\sim} \frac{1}{2} x^2$	$\cos x = 1 - \frac{1}{2}x^2 + o(x^2)$
$\lim_{x \to 0} \frac{\ln\left(1+x\right)}{x} = 1$	$ \ln\left(1+x\right) \underset{x\to 0}{\sim} x $	$\ln\left(1+x\right) = x + o\left(x\right)$
$\lim_{x \to 0} \frac{\log_a x}{x} = \frac{1}{\ln a}$	$\log_a (1+x) \underset{x\to 0}{\sim} \frac{x}{\ln a}$	$\log_a \left(1 + x \right) = \frac{x}{x \to 0} + o(x)$
$\lim_{x\to 0}\frac{e^x-1}{x}=1$	$e^x - 1 \underset{x \to 0}{\sim} x$	$e^x = 1 + x + o(x)$

$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$	$a^x - 1 \underset{x \to 0}{\sim} x \ln a$	$a^{x} = 1 + x \ln a + o(x)$
$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu$	$\left(1+x\right)^{\mu}-1\underset{x\to 0}{\sim}\mu x$	$(1+x)^{\mu} = 1 + \mu x + o(x)$

6⁰. Операции с " o ".

1) Если $\beta_1, \, \beta_2$ одного порядка, то $o(\beta_1) = o(\beta_2)$.

2)
$$o(\beta) \pm o(\beta) = o(\beta)$$
.

Равенство следует понимать как утверждение:

Если
$$\alpha_1 = o(\beta)$$
 и $\alpha_2 = o(\beta)$, то $\alpha_1 \pm \alpha_2 = o(\beta)$.

3)
$$\gamma \cdot o(\beta) = o(\gamma \beta)$$
, $o(\gamma) \cdot o(\beta) = o(\gamma \beta)$.

4) Если
$$\alpha = o(\beta)$$
, $\beta = o(\gamma)$, то $\alpha = o(\gamma)$.

Действительно, $\frac{\alpha}{\gamma} = \frac{\alpha}{\beta} \frac{\beta}{\gamma} \to 0 \cdot 0 = 0$.

Примеры. $x^3 = o(x^2)$, $x^2 = o(x)$, поэтому $x^3 = o(x)$, иными словами $o(x^2) = o(x)$.

Отметим, что в последнем "равенстве" нельзя менять местами левую и правую части.

70. Пример

$$\lim_{x \to 0} \frac{e^x \sqrt{1+x} - \sqrt[3]{1+3x}}{x}$$

$$e^x = 1 + x + o(x);$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x);$$

$$e^x \sqrt{1+x} = 1 + \frac{3}{2}x + o(x);$$

$$\sqrt[3]{1+3x} = 1 + x + o(x);$$

$$e^x \sqrt{1+x} - \sqrt[3]{1+3x} = \frac{1}{2}x + o(x) \sim \frac{1}{2}x$$

Ответ. $\frac{1}{2}$.

8 $^{\circ}$. Замечание. В проведенных построениях можно отказаться от условия необращения функции β в нуль.

Новые определения

$$\alpha = o(\beta) \Leftrightarrow \exists \varphi \ \varphi \to 0, \ \alpha = \varphi \beta;$$

 $\alpha \sim \beta \Leftrightarrow \exists \varphi \ \varphi \to 1, \ \alpha = \varphi \beta.$

§ 8. Предел монотонной функции

Определение

Пусть f — функция, определенная на промежутке Δ .

1) Функция f называется возрастающей (строго возрастающей), если

$$\forall x, y \in \Delta \ x < y \Rightarrow f(x) \le f(y) (f(x) < f(y)).$$

2) Функция f называется убывающей (строго убывающей), если

$$\forall x, y \in \Delta \ x < y \Rightarrow f(x) \ge f(y) (f(x) > f(y)).$$

3) Функция называется (строго) монотонной, если она (строго) возрастает или (строго) убывает

Теорема 1.

Пусть f — монотонная функция на интервале (a, b).

Тогда существуют односторонние пределы f(a+0), f(b-0), может быть, бесконечные.

Доказательство.

Для определенности рассмотрим возрастающую функцию.

1) Пусть f ограничена сверху. Положим $M=\sup f\left(a,b\right)$ и покажем, что $f\left(x\right)\underset{x\to b-0}{\longrightarrow} M$.

Возьмем произвольное $\, arepsilon > 0 \, .$ Найдется такой $\, x_0 \in \! \left(a, \, b \right)$, что $\, f \left(x_0 \right) \! > \! M - arepsilon \, .$

Положим $\delta = b - x_0$. Теперь, $\forall x \in (b - \delta, b)$ имеет место неравенство $x > b - \delta = x_0$, поэтому $f\left(x\right) \geq f\left(x_0\right) > b - \varepsilon$, $M - \varepsilon < f\left(x\right) \leq M$. Видим, что $f\left(x\right) \underset{x \to b - 0}{\longrightarrow} M$.

2) В случае неограниченности $f\left(x\right) \underset{x \to b-0}{\longrightarrow} + \infty$.

Действительно, $\forall E > 0 \exists x_0 \ f(x_0) > E$. Далее, $\forall x \in (x_0, b) \ f(x) \ge f(x_0) > E$.

§ 9. Критерий Коши существования предела

Теорема 1.

Для существования конечного предела $\lim_{x \to a} f(x)$ необходимо и достаточно условие Коши

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ 0 < |x' - a|, |x'' - a| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Доказательство.

1) Необходимость. Пусть $f(x) \underset{x \to a}{\longrightarrow} A$.

Возьмем произвольное $\, arepsilon > 0 \,$. Найдется такое $\, \delta > 0 \,$, что

$$0 < |x - a| < \delta \Rightarrow |f(x) - A| < \frac{\varepsilon}{2}$$
.

Для любых $x', \, x''$, удовлетворяющих условиям $0 < \left| x' - a \right|, \left| x'' - a \right| < \delta$ получается неравенство

$$\left| f\left(x'\right) - f\left(x''\right) \right| = \left| \left(f\left(x'\right) - A \right) - \left(f\left(x''\right) - A \right) \right| \leq \left| f\left(x'\right) - A \right| + \left| f\left(x''\right) - A \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

2) Достаточность. Возьмем произвольное $\, arepsilon > 0 \,$ и подберем $\, \delta > 0 \,$, о котором идет речь в условии Коши.

Для произвольной последовательности $\left\{x_n\right\}_{n=1}^{\infty}$, для которой $x_n \to a$ и $x_n \neq a$, найдется такой номер N , что

$$n > N \implies 0 < |x_n - a| < \delta$$
.

Получается, что

$$\forall n, m > N \left| f(x_n) - f(x_m) \right| < \varepsilon.$$

Последовательность $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ фундаментальная, следовательно, она сходится. Осталось убедиться в том, что все такие последовательности имеют один и тот же предел. Пусть последовательности $\left\{x_{n}'\right\}, \left\{x_{n}''\right\}$ имеют предел a и состоят из членов, отличных от a. Построим последовательность $\left\{x_{n}\right\}$, полагая $x_{2n-1}=x_{n}', \ x_{2n}=x_{n}''$. Тогда $x_{n}\underset{n\to\infty}{\longrightarrow}a, \ x_{n}\neq a$, поэтому существует $A=\lim_{n\to\infty}f\left(x_{n}\right)$. По теореме о пределе подпоследовательности $f\left(x_{n}'\right), \ f\left(x_{n}''\right)\underset{n\to\infty}{\longrightarrow}A$.