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Глава V. СИСТЕМЫ ОБЫКНОВЕННЫХ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 

§ 1. Основные определения 

10. Определение 

Система вида 
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1 1 1
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, , , ,

, , , ,
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n n n

x f t x x

x f t x x
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 



 

 (1) 

где 1 2, ,f f  — непрерывные функции в области 1nG +  , называется нормальной системой 

n -го порядка обыкновенных дифференциальных уравнений. 

(Здесь верхние индексы нумеруют компоненты вектора, столбца. Верхние индексы сейчас не 

являются показателями степени). 

Набор функций  

 ( ) ( ) ( )1 1 , ; ,n nx t x t t   = =   

называется решением системы (1), если он этой системе удовлетворяет, т.е. 

1) функции 1, , n   непрерывно дифференцируемы, 

2) ( ) ( ) ( )( )1, , , , nt a t t t G     , 

3) ( ) ( ) ( ) ( )( )1, , , , , 1, ,k k nt t f t t t k n      = =  . 

Представляется удобным ввести векторную запись системы (1). Пусть  

 : nf G→   — 

отображение с координатными функциями 1, , nf f , ( )1, , n nx x x=  , ( )1, , nx x x=  , 

тогда система (1) принимает вид  

 ( ) ( ), , ,x f t x t x G=  . (2) 

Решение системы (2) — это непрерывно дифференцируемая вектор-функция 

( ) ( ), ,x t t  =  , удовлетворяющая системе (уравнению) (2): 

 ( ) ( ) ( )( ), ,t t f t t     = . 

20. Задача Коши состоит в построении решения уравнения (2), удовлетворяющего 

начальному условию  

 
0

0t
x x=  (3) 

( ( )0 0,t x G ). 

30. Теорема существования и единственности. 

Пусть отображение f  непрерывно дифференцируемо. 

Тогда задача Коши для системы (2) с начальным условием (3) имеет единственное решение. 

40. Сведение дифференциального уравнения n -го порядка к нормальной системе. 

Дифференциальное уравнение 

 
( ) ( )( )1, , ,
n n
x f t x x x

−
=   (4) 

равносильно нормальной системе 
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 (5) 

Если функция ( )x t=  — решение уравнения, то набор ( )( )1, , ,
n

  
−  — решение системы; 

если ( )1 2, , , n    — решение системы, то 1  — решение уравнения. 

50. Метод исключения. При некоторых дополнительных условиях систему удается свести к 

одному уравнению. Рассмотрим для простоты систему третьего порядка. 

 

( )

( )

( )

, , , ,

, , , ,

, , , .

x f t x y z

y g t x y z

z h t x y z

=


=


=







 

Дифференцирование первого уравнение дает 

 
f f f f f f f f

x x y z f g h
t x y z t x y z

       
= + + + = + + +
       

  , т.е. 

 ( ), , ,x G t x y z=  

Повторное дифференцирование приводит к уравнению 

 ( ), , ,x H t x y z=  (6) 

При некоторых дополнительных условиях система 

 
( )

( )

, , , ,

, , ,

x f t x y z

x G t x y z

=


=




 (7) 

равносильна системе 

 
( )

( )

, , , ,

, , , .

y p t x x x

z q t x x x

=


=




 (8) 

Подставляя выражения (8) в уравнение (6), получаем дифференциальное уравнение 

 ( ), , ,x t x x x=   (9) 

третьего порядка. 

Имея решение уравнения (9), решение системы строим с помощью соотношений (8). 

§ 2. Линейная система обыкновенных дифференциальных 
уравнений 

Линейная система обыкновенных дифференциальных уравнений имеет вид 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1

1

1

1

,

,

n

n

n n n n n

n

x a t x a t x f t

x a t x a t x f t

 = + +




= + +

 



 

 (1) 

1

1 , , n

na a ; 1, , nf f  непрерывны на интервале ( ),  . 

Система  
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



= +
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 (2) 

называется линейной однородной (соответствующей системе(1)). 

Если ввести в рассмотрение матрицу 

 ( )

( ) ( )

( ) ( )

1 1

1

1

n

n n

n

a t a t

A t

a t a t

 
 

=  
 
 







, 

то наши системы можно записать в матричном виде 

 ( ) ( )x A t x f t= + , (1') 

 ( )x A t x=  (2') 

Теорема существования и единственности. 

Если ( )0 0, , nt x   , то задача Коши для системы (1) с начальным условием  

 
0

0t
x x=  (3) 

имеет единственное решение ( ) ( ), ,x t t  =  , определенное на всем интервале ( ),  . 

§ 3. Линейная однородная система обыкновенных 
дифференциальных уравнений 

В этом параграфе мы рассмотрим систему 

 ( )x A t x=  (1) 

Предложение 1. Решения системы (1) образуют линейное пространство, подпространство 

линейного пространства непрерывно дифференцируемых вектор-функций, определенных на 

( ),  . 

Доказательство.  Пусть ,   — решения системы (1), т.е. ,A A   = = , ,  , 

  = + . Тогда  

 ( )A A A A         = + = + = + = , 

  — решение системы (1). 

Определение Вектор-функции 1, , n   на ( ),   называются линейно зависимыми, если 

существует такой ненулевой набор чисел 1, , n  , что 

 1

1 0n

n   + + = . 

Определение. Пусть 1, , n   — вектор-функции на ( ),  . Функция  

 ( )

( ) ( )

( ) ( )

1 1

1

1

n

n n

n

t t

W t

t t

 

 

=







 

называется определителем Вронского. Определитель составлен из координатных столбцов 

вектор-функций 1, , n  . 

Предложение 2. Если 1, , n   линейно зависимы, то 0W = . 
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Доказательство. Линейная зависимость функций означает линейную зависимость столбцов 

матрицы. Поэтому определитель равен нулю. 

Предложение 3. Пусть 1, , n   — решения системы (1), ( )0 ,t   , ( )0 0W t = . 

Тогда 1, , n   линейно зависимы. 

Доказательство. Пусть ( )0 0W t = , тогда столбцы определителя ( )0W t  линейно зависимы, 

найдется такой ненулевой набор чисел 1, , n  , что ( ) ( )1

1 0 0 0n

nt t   + + = . Функция 

1

1

n

n    = + +  является решением задачи Коши с нулевым начальным условием в точке 

0t . По теореме единственности 0 = , функции 1, , n   линейно зависимы. 

Альтернатива Вронского. Пусть 1, , n   — решения системы (1). 

Тогда 

( ) ( ), 0t W t   =  или ( ) ( ), 0t W t    . 

Формула Лиувилля. Пусть 1, , n   — решения системы (1), W  — определитель 

Вронского. 

Тогда 

 ( ) ( ) ( )
0

P t
W t W t e= , (2) 

где ( )P t  — первообразная для следа ( )( ) ( )
1

tr
n

k

k

k

A t a t
=

=  матрицы A , ( ) ( )( )
0

t

t

P t tr A s ds=   . 

Доказательство. 

Производная ( )W t  записывается в виде суммы n  определителей, в каждом из которых 

дифференцированию подвергнута одна строка. Рассмотрим, например первый из 

определителей 

 

( ) ( )

( ) ( )

( ) ( )

1 1

1

2 2

1

1

n

n

n n

n

t t

t t

t t

 

 

 

 







  

В этом определителе первая строка в силу системы (1) является линейной комбинацией строк 

определителя Вронского (с коэффициентами ( ) ( )1 1

1 , , na t a t  ). Пользуясь линейностью 

определителя по строке, мы можем записать этот определитель в виде суммы n  слагаемых:  

 ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

1 1 2 2

1 1 1

2 2 2 2 2 2

1 1 11 1 1

1 2

1 1 1

n n

n n n

n n n

n

n n n n n n

n n n

t t t t t t

t t t t t t
a t a t a t

t t t t t t

     

     

     

+ + +










. 

Первое слагаемое равно ( ) ( )1

1a t W t , а остальные оказываются нулями, поскольку 

определители содержат две одинаковые строки. 

Повторив рассуждение для остальных слагаемых, мы получим формулу 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1

1 ,n

nW t a t a t W t W t tr A t W t= + + =  . 

Проведенные вычисления можно представить одной строкой: 
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 ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )( ) ( )

1 1 1 1

1 1

1 1

1 1 1 1
1 1 1 1

1 1

tr

i i i i

n n
n n n n

i i i j j i

n j n i

i i j i
i i i i

n n

t t t t

W t t t a t t aW t A t W t

t t t t

   

   

   

− − − −

= = = =
+ + + +

= = = =  





  





 

Определитель Вронского — решение линейного однородного дифференциального уравнения 

первого порядка ( )( )z tr A t z= . Справедлива формула (2). 

 

Предложение 4. Пространство решений системы (1) n -мерно. 

Доказательство. Выберем ( )0 ,t   . По теореме существования и единственности система 

(1) имеет решения 1, , n  , удовлетворяющие начальным условиям ( ) ( )1 0 1 0, , n nt e t e = =  

(здесь 1, , ne e  — канонический базис пространства n ). Эти решения образуют линейно 

независимую систему. Размерность пространства решений не меньше n . Пусть   — 

произвольное решение, тогда ( ) ( )1

0 1 0

n

nt t    − − −  — решение задачи Коши с нулевым 

начальным условием. По теореме единственности ( ) ( )1

0 1 0

n

nt t    = − − ,   — линейная 

комбинация 1, , n  . Размерность пространства решений не больше n . 1, , n  — базис 

пространства решений. 

Определение. Базис пространства решений называется фундаментальной системой решений 

(ФСР). 

ФСР, построенная в Предложении 2, называется ФСР, нормированной в точке 0t . 

Теорема 1. Пусть 1, , n   — ФСР системы (1). 

Тогда формула 

 ( ) ( )1

1

n

nx C t C t = + + . (3) 

дает общее решение системы (1). 

При любых 1, , nC C  функция 1

1

n

nC C + +  —решение, и все решения так 

представляются. 

Определение. Пусть 1, , n   — ФСР системы (1). Рассмотрим матрицу ( )1, , n  =  , 

составленную из столбцов 1, , n  . Эта матрица называется фундаментальной матрицей 

системы (1). 

Теперь общее решение можно записать в виде 

 ( ) ( )x t t C=  , (4) 

где C  — произвольный столбец. 

Заметим, что для фундаментальной матрицы справедливо соотношение 

 A =  . 

  — невырожденная матрица, удовлетворяющая уравнению (1). 

§ 4. Линейная неоднородная система обыкновенных 
дифференциальных уравнений 

10. Теорема 1. Общее решение 

Мы рассматриваем линейную систему 
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 ( ) ( )x A t x f t= +   (1) 

и соответствующую ей линейную однородную систему 

 ( )x A t x=   (2) 

Если 0  – решение (1), а   — решение (2), то 0  = +  — решение (1); если 0 ,   — 

решения (1), то 0  = −  —решение (1). Мы можем сказать, что формула 0  = +  дает 

общий вид решения линейной неоднородной системы. 

Если 1, , n  — фундаментальная система решений системы (2), а 0  – решение (1), то 

формула 

 ( ) ( ) ( )1

0 1

n

nx t C t C t  = + + +   (3) 

дает общее решение линейной неоднородной системы (1). 

Доказательство. 

1) Если 0  – решение (1), а   — решение (2), то  

 ( )0 0 0A f A A f A f       = + = + + = + + = + , 

  — решение (1). 

2) Если 0 ,   — решения (1), а 0  = − , то  

 ( ) ( ) ( )0 0 0A f A f A A       = − = + − + = − = , 

  — решение линейной однородной системы. 

Из доказанных утверждений видно, что любая функция, полученная по формуле (3) — 

решение линейной неоднородной системы; наоборот, любое решение   записывается в виде 

0  = + , а   , в свою очередь, записывается в виде 1

1

n

nC C  = + + , так что   

получается по формуле (3). 

20. Метод вариации произвольных постоянных. 

Если 1, , n  — фундаментальная система решений системы (2), то решение линейной 

неоднородной системы (1) можно найти по формуле  

 ( ) ( ) ( ) ( )1

1

n

nC t t C t t  = + + , где (4) 

функции 1, , nC C  находятся из системы линейных уравнений 

 1

1

n

nC C f + + =  . (5) 

Действительно,  

 1 1 1

1 1 1

n n n

n n nC C C C C A C A f A f       = + + + + + = + + + = +  , 

  —решение системы (1). 

 

§ 5. Линейная система обыкновенных дифференциальных 
уравнений с постоянными коэффициентами 

10. Линейная однородная система. Случай характеристического многочлена с простыми 

корнями. 

 x Ax= , A  — комплексная матрица. (1) 

Предложение 1. 
0 , 0
t

x Ue U


=   — решение системы (1)  0  — собственное число, U  — собственный 

вектор матрицы A . 

Доказательство. 
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0 , 0
t

x Ue U


=   — решение системы (1)  0 0

0

t t
Ue AUe

  =    0AU U=   0  — 

собственное число, U  — собственный вектор матрицы A . 

Теорема 1. 

Пусть A  имеет n  различных собственных чисел 1, , n  , 1, , nU U  — соответствующие 

собственные векторы. 

Тогда функции 

 1

1 , , ntt

nU e U e
   (2) 

образуют ФСР системы (1). 

Доказательство. 

По предложению 1 функции совокупности (2) являются решениями системы (1). Проверим 

линейную независимость. Проведем индукцию по n . При 1n =  линейная независимость 

обеспечена отличием собственного вектора от нуля. Допустим, линейная независимость 

установлена для совокупности, включающей n  функций. Рассмотрим совокупность из 1n +  

функции. Допустим, линейная комбинация этих функций с коэффициентами 
1 2 1, , , ,n n    +  оказалась нулевой функцией: 

 11 21 2 1

1 2 1 0n nt tt t n n

n nU e U e a U e U e
     ++

++ + + + = . (3) 

Тогда 

 
( ) ( ) ( )1 1 2 1 11 2 1

1 2 1 0n n n nt t tn n

n nU e U e a U e U
     

  + + +− − − +

++ + + + = . 

Дифференцирование дает равенство 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 11 2

1 1 1 2 2 1 1 0n n n nt t tn

n n n n nU e U e a U e
     

       + + +− − −

+ + +− + − + + − = . 

По индукционному предположению 1 0n = = = ; соотношение (3) сводится к 
11

1 0n tn

nU e
 ++

+ = , так что и 1 0n + = . Линейная комбинация функций (2) оказывается нулевой 

только при нулевых коэффициентах, функции (2) линейно независимы. 

Замечание. ФСР из функций вида tUe  можно построить и в том случае, если матрица имеет 

кратные корни, но каждому собственному числу отвечает столько линейно независимых 

собственных векторов, какова кратность собственного числа. 

В такой ситуации в пространстве n  существует базис из собственных векторов матрицы A , 

матрица A  подобна диагональной матрице, т.е. существует такая невырожденная матрица 

K , что 1B K AK−=  — диагональная матрица. Выполним в (1) замену переменной по формуле  

 x Ky= : (4) 
1,Ky AKy y K AKy−= = , 

 y By= . (5) 

В координатах система (5) имеет вид 

 

1 1

1 ,

.n n

n

y y

y y





 =




=







 (6) 

Система распадается на отдельные уравнения и легко интегрируется: 

 

11 1 ,

.n

t

tn n

y C e

y C e





 =




=

  (7) 

Формулы (7) дают общее решение системы (6), а преобразование (4) приводит к общему 

решению (1). 
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При решении конкретных задач можно не проводить явное приведение системы к 

диагональному виду, а построить ФСР в форме (2), взяв максимальную линейно независимую 

систему собственных векторов для каждого собственного числа матрицы A . 

20. Линейная однородная система. Случай характеристического многочлена с кратными 

корнями. 

Приведем матрицу к форме Жордана: 

 1B K AK−=  — жорданова матрица. (8) 

Замена (4) дает систему (5), которая распадается на несколько систем, имеющих своими 

матрицами жордановы клетки. Рассмотрим одну из таких систем. 

 

1 1

2 1 2

1

,

,

.k k k

y y

y y y

y y y





−

 =


= +


 = +









 (9) 

Интегрирование дает общее решение 

 

( )

1 1

2 1 2

1
1

,

,

.
1 !

t

t t

k
k t k t

y C e

y C te C e

t
y C e C e

k



 

 
−

 =


= +



 = + +
 −





 (10) 

ФСР системы (9) состоит из функций 

 

( )
( )

2

2

1

1
0

0
1

0

, , , 02!

1
2 !

1 !

t t t

k

k

t

t
t

e e e

t
t

k
k

  

−

−

 
  

   
   
   
   
   
          −  − 




 

. (11) 

Объединяя ФСР систем вида (9), мы получаем ФСР  

 1, , n   

системы (5). 

Функции 

 1 1, , n nK K   = =  (12) 

образуют ФСР системы (1).  

Явно приводить матрицу к форме Жордана не обязательно. Можно заметить, что ФСР (12) 

состоит из функций вида  

 ( ) tU t e , 

где   — собственное число матрицы A , U  — столбец из многочленов, степени которых не 

превосходят 1k −  ( k  — кратность собственного числа) Указанную оценку можно уточнить, 

степени многочленов не превзойдут порядка соответствующей жордановой клетки. 

Для получения ФСР следует построить достаточное число линейно независимых решений 

указанного вида. Можно начать с построения решений вида tUe , U  — собственный вектор, 
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затем построить решения ( ) tUt V e+ , ( )2 tUt Vt W e+ +  и т. д. до получения требуемого числа 

решений. 

30. Построение вещественной ФСР. 

Сосредоточимся на рассмотрении вещественных систем. Вещественная матрица может иметь 

невещественные собственные числа. Поэтому предложенная процедура приводит нас к ФСР, 

в которой могут присутствовать невещественные функции. Если система  
 x Ax=  

с вещественными коэффициентами имеет комплексное решение  , то решениями являются и 

Re , Im  . Можно считать, что ФСР включает в себя вместе с   и функцию  , так что пара 

функций Re , Im   заменяет пару ,  . Операция овеществления сохраняет число функций, 

причем старая и новая системы являются линейными комбинациями друг для друга: 

 
( ) ( )
1 1

Re , Im ;
2 2

Re Im , Re Im .

i

i i

     

     

= + = −

= + = −

 

Получаемая вещественная совокупность тоже окажется ФСР. 

Заметим, что достаточно построить решения, отвечающие одному из собственных чисел ,   

и выделить вещественные и мнимые части этих решений. 

40. Линейная неоднородная система. 

Вопрос интегрирования линейной неоднородной системы 

 ( )x Ax f t= +  (13) 

принципиально решается методом вариации произвольных постоянных, но для систем со 

свободными членами специального вида удобнее пользоваться методом неопределенных 

коэффициентов. 

Если  

 ( ) ( ) 0t

lf t M t e


= , 

где ( )lM t  — столбец из многочленов степени не выше l , можно попытаться найти решение 

в виде 

 ( ) 0t

lx S t e


= , (14) 

где ( )lS t  — столбец из многочленов степени не выше l . Возможность такого построения 

гарантируется, если 0  не является собственным числом матрицы A . Если же 0  — 

собственное число кратности k , то может потребоваться повышение степени многочленов, 

но не более чем на k  единиц, можно найти решение в виде 

 ( ) 0t

l kx S t e


+= . (15) 

Убедимся в возможности найти решение в форме (14) или (15). 

Замена переменных x Ky=  сводит систему (13) к системе с жордановой матрицей 

 ( )y By g t= + . (16) 

Последняя система распадается на системы с жордановыми клетками. Рассмотрим одну из 

таких систем 
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( )

( )

( )

0

0

0

1 1 1

2 1 2 2

1

,

,

.

t

l

t

l

tk k k k

l

y y N t e

y y y N t e

y y y N t e











−

 = +


= + +


 = + +









 

Предположим, что 0  . Первое уравнение имеет решение вида ( ) 01 1 t

ly T t e


= . Подставив, 

это выражение во второе уравнение, получаем уравнение 

 ( ) 02 2 2 t

ly y N t e
= +   

с решением вида ( ) 02

2

t

ly T t e


= , и т.д. Получается решение вида ( ) 0t

ly T t e


= . 

Если 0 = , то первое уравнение имеет решение вида ( ) 0

1

t

ly tT t e


= . Подставив, это 

выражение во второе уравнение, получаем уравнение 

 ( ) 02 2 2

1

t

ly y N t e
 += +   

с решением вида ( ) 02 2

1

t

ly tT t e


+= , и т.д. Получается решение вида ( ) 0t

l ky T t e


+= . 

Возвращаясь к старым переменным ( x Ky= ), получаем решение вида (14) или (15) системы 

(13). 

Для вещественной системы 

 ( ) ( )( )cos sint

l mx Ax e M t t N t t  = + +   (17) 

решение можно найти в виде 

 ( ) ( )( )cos sintx e S t t T t t

  = + , (  max ,l m = ), (18) 

если i   не являются с.ч. матрицы A , и в виде 

 ( ) ( )( )cos sint

k kx e S t t T t t

  + += + , (19) 

если i   — с.ч. кратности k  для матрицы A . 

(Рассмотрим систему 
( ) ( ) ( )( )i x

l mx Ax e M t iN t
 +

= + − . По доказанному система имеет 

решение вида ( ) ( )i t
l kx U t e

 +

+= . Вещественная часть этого решения имеет вид (19) и служит 

решением для (17). 

 

50. Примеры. 

Пример 1. Пусть 

3 4 2

1 1 1

1 2 1

A

− 
 

= −
 
 − 

. Эта матрица имеет собственные числа 
1,2,3 1 = . 

Рассмотрим линейную однородную систему 

 x Ax=   (20) 

Алгебраическая система AU U= , или 0BU = , где 

2 4 2

1 2 1

1 2 0

B A E

− 
 

= − = −
 
 − 

, имеет с 

точностью до числового множителя единственное решение 

2

1

0

U

 
 

=
 
 
 

. 
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2

1

0

U

 
 

=
 
 
 

 — собственный вектор матрицы A , tUe  — решение системы (20).  

Дополнительное решение ищем в виде 

 ( ) tx Ut V e= + . 

Подстановка в систему дает  

 ( )Ut V U A Ut V+ + = + , 

 0;BU BV U= = . 

Можем взять 

2

1

0

U

 
 

=
 
 
 

, 

0

0

1

V

 
 

=
 
 
 

. Функция ( )

2

1

t t

t

Ut V e t e

 
 

+ =
 
 
 

 —решение системы. 

Третье решение найдем в виде 

 ( )2 2 tx Ut Vt W e= + + : 

 ( ) ( )( )2 22 2 2 2t tUt Vt W Ut V e A Ut Vt W e+ + + + = + + ; 

 0; ; 2BU BV U BW V= = =   

Полагаем  

2

1

0

U

 
 

=
 
 
 

, 

0

0

1

V

 
 

=
 
 
 

, 

0

1

2

W

 
 

=
 
 
 

. Функция 

2

2

2

1

2 2

t

t

t e

t

 
 

+ 
 + 

 —решение системы. 

Решения

2

1

0

te

 
 
 
 
 

, 

2

1

t

t

t e

 
 
 
 
 

,

2

2

2

1

2 2

t

t

t e

t

 
 

+ 
 + 

 образуют ФСР, формула 

 

2

2

1 2 3

2 2 2

1 1

0 1 2 2

t t t

t t

X c e c t e c t e

t

    
    

= + + +    
     +     

  

дает общее решение линейной однородной системы (20). 

Рассмотрим линейную неоднородную систему 

 

6

0

0

tx Ax e

− 
 

= +
 
 
 

   (21) 

Следует попытаться найти решение в виде tx Se= . Для отыскания столбца S  получаем 

систему 

6 2 4 2 6

0 , 1 2 1 0

0 1 2 0 0

BS S

−     
     

= − =
     
     −     

, не имеющую решений.  

Ищем решение в виде ( )3 2 tx Pt Qt Rt S e= + + + . 
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Для столбцов , , ,P Q R S  должны выполняться условия 

6

0, 3 , 2 , 0

0

BP BQ P BR Q BS R

 
 

= = = = +
 
 
 

. 

Возьмем 

2 0 0

1 , 0 , 3

0 3 6

P Q R  

     
     

= = =
     
     
     

, для отыскания столбца S  получаем систему 

6 2 4 2 6

0 , 1 2 1 3

0 1 2 0 6

BS 



−    
    

= −
    
    −    

. Система оказывается совместной только при 1 =  , решением 

является, например, столбец 

0

3

9

S

 
 

=
 
 
 

. 

Построено решение 

3

3

2

2

3 3

3 6 9

t

t

t t e

t t

 
 

+ + 
 

+ + 

 для системы (21). 

Рассмотрим систему 

 

2cos 14sin

3cos 2sin

4cos 8sin

t t

x Ax t t

t t

+ 
 

= + +
 
 − − 

   (22) 

Решение ищем в виде cos sinx P t Q t= + . Подстановкой в (22) получаем 

 

2cos 14sin

sin cos cos sin 3cos 2sin

4cos 8sin

t t

P t Q t AP t AQ t t t

t t

+ 
 

− + = + + +
 
 − − 

  

 

2 14

3 , 2

4 8

Q AP P AQ

   
   

= + − = +
   
   − −   

  

 2

2 14 2 14

3 2 , 3 2

4 8 4 8

P A AP P A P A

        
        

− = + + − = + +        
        − − − −        

. 

Поскольку 
2

3 4 4 2 14

1 1 2 , 3 5

2 4 1 4 0

A A

− −     
     

= − = −
     
     − −     

, то для отыскания столбца P  получаем 

систему 
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4 4 4 0

1 0 2 3 0

2 4 2 8

P

−   
   

+ − =
   
   − −   

, 

решением которой является столбец 

1

2

1

P

 
 

=
 
 
 

. Формула

2

3

4

Q AP

 
 

= +
 
 − 

 дает 

1

3

0

Q

− 
 

=
 
 
 

  

Система (22) имеет решение 

cos sin

2cos 3sin

cos

t t

x t t

t

− 
 

= +
 
 
 

. 

Пример 2. 

3 1 1

1 3 1

2 2 0

A

− 
 

= −
 
 
 

, 
1,2,3 2, =  

 
2 2 2

1 2 3

1 0 1

0 , 1 ,

1 1 2

t t t

t

x e x e x t e

t

+     
     

= = =
     
     
     

 — ФСР системы x Ax= . 

Система 

3cos 2sin

3sin

2cos 2sin

t t

x Ax t

t t

− − 
 

= + −
 
 − − 

  имеет решение 

cos

sin

0

t

x t

 
 

=
 
 
 

 

Пример 3. 

4 1 1

7 6 5

5 3 1

A

− 
 

= −
 
 − 

, 
1,2,3 3 = , 

1 1 1

3 7 3 5

5 3 4

B A E

− 
 

= − = −
 
 − 

 

 

1 0 1

0 для 1 ; для 2 ; для , 0

2 1 1

BU U BV U V BW V W

     
     

= = = = = =
     
     
     

  

( ) ( )3 3 2 3

1 2 3, , 2 2t t tx Ue x Ut V e x Ut Vt W e= = + = + + — ФСР системы x Ax= . 

Система 

0

0

1

tx Ax e

 
 

= +
 
 
 

  имеет решение

0

1

1

tx e

 
 

= −
 
 − 

. Система 
3

2

10

8

tx Ax e

 
 

= −
 
 
 

  имеет решение 

3

1

1

0

tx e

 
 

=
 
 
 

. Система 
3

10

10

4

tx Ax e

 
 

= + −
 
 
 

  имеет решение 3 2 3

1

2 6 12 1

0

tx Ut Vt Wt e

  
  

= + + +  
  
  

. 

Пример 5. 

1 1 3

2 2 2

1 3 1

A

− 
 

= −
 
 − − 

, 
1 2,32, 2 2i = − =  . 
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2 2 2

1 2 3

1 cos 2 sin 2

0 , cos 2 sin 2 , sin 2 cos 2

1 sin 2 cos 2

t t t

t t

x e x t t e x t t e

t t

−

     
     

= = + = −
     
     −     

 — ФСР системы x Ax= . 

Пример 6. 

16 36 5

10 22 3

10 20 2

A

− − 
 

= − −
 
 − − 

, 
1 2,32, 1 i = =   

 

2

2

2

0

t

t

x e

y e

z

 =


=
 =


      

( )

( )

9cos 2sin

5 cos

5cos 5sin

t

t

t

x e t t

y e t

z e t t

 = +


=


= −

      

( )

( )

9sin 2cos

5 sin

5sin 5cos

t

t

t

x e t t

y e t

z e t t

 = −


=


= +

— ФСР системы x Ax= . 

Пример 7. 

3 8 0

2 5 0

1 2 1

A

− 
 

= −
 
 − 

, 
1,2,3 1 =

 1 2 3

2 0 4 1

1 0 2

0 1

t t t

t

x c e c e c t e

t

−     
     

= + +
     
     
     

 — общее решение системы x Ax= . 

Система 

5

3

2

x Ax

− 
 

= + −
 
 − 

  имеет решение 

1

1

1

x

 
 

=
 
 
 

. Система 

4

2

1

tx Ax e

 
 

= +
 
 
 

  имеет решение 

1

0

0

tx e

 
 

=
 
 
 

. Система 

2

1

1

tx Ax e

 
 

= +
 
 
 

  имеет решение 

2 1

0

t

t

x t e

− + 
 

= −
 
 
 

. Система 

2

0

0

tx Ax e

− 
 

= +
 
 
 

  

имеет решение 

2

2

2

4 2

2 t

t t

x t e

t

 −
 

=  
 
 

. 


