§ 7. Линейное однородное дифференциальное уравнение с постоянными коэффициентами

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

$$Ly = 0,$$
(1)

 a_1, \ldots, a_n — числа.

10. Комплексные функции вещественного переменного.

Функция γ , определенная на промежутке Δ и принимающая комплексные значения:

$$\gamma: \Delta \to \mathbb{C}$$

называется комплексной функцией вещественного переменного. Такую функцию можно записать в виде $\gamma = \varphi + i \psi$, где φ , ψ — вещественные функции, называемые вещественной и мнимой частью комплексной функции: $\varphi = \text{Re}\,\gamma$, $\psi = \text{Im}\,\gamma$.

Дифференцирование комплексной функции производится покомпонентно:

$$\gamma' = \varphi' + i\psi'$$
.

Мы можем применить к комплексной функции оператор L:

$$L\gamma = L\varphi + iL\psi$$

Если $L\gamma = 0$, назовем функцию γ решением дифференциального уравнения (1).

Можно и само уравнение считать комплексным, т.е. допустить, что a_1, \dots, a_n — комплексные числа.

Мы построим ФСР из функций вида $\varphi(x) = e^{\lambda x}$, где λ — комплексное число.

20. Характеристический многочлен.

Многочлен

$$P(\lambda) = \lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-1}\lambda + a_{n}$$
(2)

называется характеристическим многочленом дифференциального уравнения (1) и линейного дифференциального оператора L.

3⁰. Построение ФСР в случае простых корней характеристического многочлена Предложение 1.

Пусть

$$\varphi_0: \varphi_0(x) = e^{\lambda_0 x} \quad \lambda_0 \in \mathbb{C}.$$

Тогда

$$L\varphi_0 = P(\lambda_0)\varphi_0, (\forall x (L\varphi_0)(x) = P(\lambda_0)\varphi_0(x)). \tag{3}$$

Доказательство.

$$\varphi_0 | a_n
\varphi_0' = \lambda_0 \varphi_0 | a_{n-1}
\varphi_0'' = \lambda_0^2 \varphi_0 | a_{n-2}
\dots |
\varphi_0^{(n)} = \lambda_0^n \varphi_0 | 1$$

$$\overline{L\varphi_0 = P(\lambda_0)\varphi_0}$$

Предложение 2.

Пусть

$$\varphi: \varphi_0(x) = e^{\lambda_0 x} \quad \lambda_0 \in \mathbb{C}$$
.

Тогла

$$\varphi_0$$
 — решение $\Leftrightarrow P(\lambda_0) = 0$.

Доказательство.

$$\varphi_0$$
 — решение $\Leftrightarrow L\varphi_0 = 0 \Leftrightarrow P(\lambda_0)\varphi_0 = 0 \Leftrightarrow P(\lambda_0) = 0$.

Предложение 3.

Пусть $\lambda_1, \dots, \lambda_n$ — попарно различные комплексные числа.

Тогда функции $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$ линейно независимы (на любом промежутке).

Локазательство.

Рассмотрим определитель Вронского

$$W:W(x) = \begin{vmatrix} e^{\lambda_1 x} & \cdots & \cdots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \cdots & \cdots & \lambda_n e^{\lambda_n x} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \cdots & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} = \begin{vmatrix} 1 & \cdots & \cdots & 1 \\ \lambda_1 & \cdots & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \ddots \\ \lambda_1^{n-1} & \cdots & \cdots & \lambda_n^{n-1} \end{vmatrix} e^{(\lambda_1 + \cdots + \lambda_n)x}.$$

Получился определитель Вандермонда $W(x) \neq 0$. Функции линейно независимы.

Теорема 1.

Пусть характеристический многочлен $P(\lambda)$ дифференциального уравнения (1) n -го порядка имеет n различных корней $\lambda_1, \lambda_2, \dots, \lambda_n$.

Тогда система функций

$$e^{\lambda_1 x}, e^{\lambda_2 x}, \dots e^{\lambda_n x}$$
 (*)

образует ФСР д.у.(1).

Доказательство.

По предложению 2 функции системы (*) — решения д.у. (1). По предложению 3 система (*) линейно независима. Система (*) состоит из n функций. (*) — базис пространства решений, ФСР.

40. Построение ФСР в случае кратных корней характеристического многочлена.

$$\lambda_0$$
 — корень кратности k для многочлена $P(\lambda) \Leftrightarrow P(\lambda) = (\lambda - \lambda_0)^k Q(\lambda)$, $Q(\lambda)$ — многочлен, $Q(\lambda_0) \neq 0 \Leftrightarrow P(\lambda_0) = P'(\lambda_0) = \cdots = P^{(k-1)}(\lambda_0) = 0$, $P^{(k)}(\lambda_0) \neq 0$.

Предложение 4.

Пусть

$$\varphi_0(x) = \psi(x)e^{\lambda_0 x}.$$

Тогда

$$(L\varphi_0)(x) = \sum_{k=0}^n \frac{1}{k!} \psi^{(k)}(x) P^{(k)}(\lambda_0) e^{\lambda_0 x}.$$

Доказательство.

$$L\varphi_0\left(x\right) = \sum_{j=0}^n a_j \left(\varphi_0\right)^{(n-j)} \left(x\right)$$
 (здесь

$$a_0 = 1$$
).

$$\begin{split} L\varphi_{0}\left(x\right) &= \sum_{j=0}^{n} a_{j} \sum_{k=0}^{n-j} C_{n-j}^{k} \psi^{(k)}\left(x\right) \left(e^{\lambda_{0}x}\right)^{(n-j-k)} = \sum_{j=0}^{n} a_{j} \sum_{k=0}^{n-j} C_{n-j}^{k} \psi^{(k)}\left(x\right) \lambda_{0}^{n-j-k} e^{\lambda_{0}x} = \\ &= \sum_{k=0}^{n} \sum_{j=0}^{n-k} a_{j} C_{n-j}^{k} \psi^{(k)}\left(x\right) \lambda_{0}^{n-j-k} e^{\lambda_{0}x} = \sum_{k=0}^{n} \frac{\psi^{(k)}\left(x\right)}{k!} \sum_{j=0}^{n-k} a_{j} \left(n-j\right) \left(n-j-1\right) \cdots \left(n-j-k+1\right) \lambda_{0}^{n-j-k} e^{\lambda_{0}x} = \\ &= \sum_{k=0}^{n} \frac{\psi^{(k)}\left(x\right)}{k!} P^{(k)}\left(\lambda_{0}\right) e^{\lambda_{0}x}, \\ &\left(P\left(x\right) = \sum_{j=0}^{n} a_{j} \lambda^{n-j}, \ P^{(k)}\left(x\right) = \sum_{j=0}^{n-k} a_{j} \left(n-j\right) \left(n-j-1\right) \cdots \left(n-j-k+1\right) \lambda^{n-j-k}\right). \end{split}$$

Предложение 5.

Пусть λ_0 — корень кратности k для характеристического многочлена $P(\lambda)$.

Тогда функции

$$e^{\lambda_0 x}$$
, $xe^{\lambda_0 x}$,..., $x^{k-1}e^{\lambda_0 x}$ —

решения д.у. (1).

Действительно, пусть $\varphi_0(x) = x^j e^{\lambda_0 x}$, j = 0,...,k-1.

По предложению 4

$$L\varphi_0(x) = \sum_{l=0}^n \frac{\left(x^j\right)^{(l)}}{l!} P^{(l)}(\lambda_0) e^{\lambda_0 x}$$

Если $l=0,1,\ldots,k-1$, то $P^{(l)}(\lambda_0)=0$; если $l=k,\,k+1,\ldots,n$, то $\left(x^j\right)^{(l)}=0$. Таким образом, все слагаемые равны нулю, $L\varphi_0=0$. $L\varphi_0$ — решение д.у. (1).

В предложении 5 для корня λ_0 кратности k указано k решений.

Теорема 2.

Пусть характеристический многочлен $P(\lambda)$ д.у. (1) имеет различные корни $\lambda_1, \lambda_2, \dots, \lambda_r$ кратностей k_1, k_2, \dots, k_r $\left(k_1 + \dots + k_r = n\right)$.

Тогда система функций

$$e^{\lambda_{1}x}, xe^{\lambda_{1}x}, ..., x^{k_{1}-1}e^{\lambda_{1}x}$$
.....
 $e^{\lambda_{r}x}, xe^{\lambda_{r}x}, ..., x^{k_{r}-1}e^{\lambda_{r}x}$
(**)

образует ФСР д.у. (1).

Доказательство.

Система (**) состоит из решений (по предложению 5).

Система (**) состоит из n функций.

Нужно доказать, что (**) линейно независима.

Доказательство проведем индукцией по r (по числу серий).

База индукции, r = 1.

Рассмотрим функции $e^{\lambda_1 x}$, $x e^{\lambda_1 x}$,..., $x^{k_1 - l} e^{\lambda_1 x}$.

Допустим, $C_1 e^{\lambda_1 x} + C_2 x e^{\lambda_1 x} + \dots + C_k x^{k_1 - 1} e^{\lambda_1 x} = 0 \quad (x \in (a, b))$, тогда $C_1 + C_2 x + \dots + C_k x^{k_1 - 1} = 0$, многочлен степени не выше $(k_1 - 1)$ -й имеет бесконечно много корней. Следовательно, этот многочлен — нулевой.

Индукционный переход. Пусть для системы (**) с r сериями линейная независимость установлена. Рассмотрим систему с (r+1) сериями.

Образуем линейную комбинацию функций этой системы:

$$M_1(x)e^{\lambda_1 x} + \dots + M_{r+1}(x)e^{\lambda_{r+1} x}, M_i(x)$$
 — многочлен степени не выше $k_i - 1$.

Допустим

$$M_1(x)e^{\lambda_1 x} + \dots + M_{r+1}(x)e^{\lambda_{r+1} x} = 0 \quad (x \in (a, b)).$$

Тогда

$$M_1(x)e^{(\lambda_1-\lambda_{r+1})x}+\cdots M_r(x)e^{(\lambda_r-\lambda_{r+1})x}+M_{r+1}(x)=0.$$

Заметим, что $\lambda_1 - \lambda_{r+1} \neq 0, \dots, \lambda_r - \lambda_{r+1} \neq 0$.

Дифференцируем достаточное число раз:

$$N_1(x)e^{(\lambda_1-\lambda_{r+1})x} + \cdots + N_r(x)e^{(\lambda_r-\lambda_{r+1})x} = 0$$
,

 $N_1, ..., N_r$ — многочлены тех же степеней, что и $M_1, ..., M_r$.

По индукционному предположению $N_1=\dots=N_r=0$. Следовательно, $M_1=\dots=M_r=0$.

Линейная комбинация сводится к одному слагаемому $M_{r+1}(x)e^{\lambda_{r+1}x}$.

$$M_{r+1}(x)e^{\lambda_{r+1}x}=0 \ (x\in(a,b)), \ M_{r+1}(x)=0. \ M_{r+1}(x)$$
 — нулевой многочлен (см. $r=1$). (**) линейно независима.

Упражнение. Провести доказательство теоремы 2 по другой схеме. Если характеристический многочлен имеет $\lambda_0=0$ корнем кратности

k , то функции $1,x,\ldots,x^{k-1}$ — решения д.у.(1). Если некоторое комплексное число λ_0 — корень кратности k для

характеристического многочлена, положим в (1) $y=ze^{\lambda_0 x}$, получим ЛОДУ с постоянными коэффициентами $L_1 z=0$, где

$$L_1 z = e^{-\lambda_0 x} L \left(z e^{\lambda_0 x} \right)$$
. Для характеристического многочлена $Q(\lambda)$ получается соотношение $Q(\lambda) = P(\lambda + \lambda_0)$. О —

корень k -й кратности для $Q(\lambda)$. $1,x,\ldots,x^{k-1}$ — решения д.у. $L_1z=0$, e^{λ_0x} , $xe^{\lambda_0x},\ldots,x^{k-1}e^{\lambda_0x}$ — решения д.у. (1).

50. Построение вещественной ФСР.

Пусть уравнение

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

$$Ly = 0,$$
(1)

имеет вещественные коэффициенты $a_1,\dots,a_n\in\mathbb{R}$.

Предложение 6.

Пусть функция $\gamma = \varphi + i\psi$ (φ , ψ — вещественные функции) является решением д.у. (1) с вещественными коэффициентами.

Тогда φ , ψ — решения д.у.(1).

Доказательство.

 $L\gamma = L\varphi + iL\psi$. $a_1, \ldots, a_n \in \mathbb{R}$, поэтому $L\varphi$, $L\psi$ вещественны.

$$\gamma$$
 — решение $\Rightarrow L\gamma = 0 \Rightarrow L\varphi + iL\psi = 0 \Rightarrow L\varphi = 0$, $L\psi = 0$.

Итак, φ , ψ — решения д.у.(1).

Теорема 3.

Пусть $\lambda_1, \lambda_2, \dots, \lambda_r$ — различные вещественные корни характеристического многочлена, k_1, k_2, \dots, k_r — их кратности, $\alpha_1 \pm i \beta_1, \dots \alpha_s \pm i \beta_s$ — мнимые корни, m_1, \dots, m_s — их кратности $(k_1 + \dots + k_r + 2 \left(m_1 + \dots + m_s \right) = n)$.

Тогда

образует Φ CP д.у. (1).

Доказательство.

(***) получена из (**) заменой серий

$$e^{\lambda x}$$
, $xe^{\lambda x}$,..., $x^{m-1}e^{\lambda x}$,
 $e^{\bar{\lambda} x}$, $xe^{\bar{\lambda} x}$,..., $x^{m-1}e^{\bar{\lambda} x}$

с невещественными $\lambda = \alpha + i\beta$, $\overline{\lambda} = \alpha - i\beta$ сериями

$$e^{\alpha x}\cos\beta x, xe^{\alpha x}\cos\beta x,..., x^{m-1}e^{\alpha x}\cos\beta x,$$

 $e^{\alpha x}\sin\beta x, xe^{\alpha x}\sin\beta x,..., x^{m-1}e^{\alpha x}\sin\beta x.$

2m функций заменяются на 2m функций. Число функций в системе остается прежним. (***) включает в себя n функций.

Каждое решение д.у.(1) — линейная комбинация функций (**), но каждая функции (**) — линейная комбинация функций (***):

$$x^{j}e^{\lambda x} = x^{j}e^{\alpha x}\cos\beta x + ix^{j}e^{\alpha x}\sin\beta x,$$

$$x^{j}e^{\bar{\lambda}x} = x^{j}e^{\alpha x}\cos\beta x - ix^{j}e^{\alpha x}\sin\beta x.$$

Каждое решение д.у.(1) — линейная комбинация функций (***). (***) — n-элементная система образующих для n-мерного пространства решений д.у. (1), (***) — базис пространства решений, (***) — ФСР д.у. (1).

Пример.

Пусть характеристический многочлен имеет корни

$$\lambda_{1,2,3} = 0$$
, $\lambda_{4,5} = 3$, $\lambda_{6} = 4$, $\lambda_{7,8,9,10} = \pm i$, $\lambda_{11,12} = 5 \pm 6i$.

Комплексную ФСР можно составить из функций

1,
$$x$$
, x^2 ; e^{3x} , xe^{3x} ; e^{4x} ; e^{ix} , xe^{ix} , e^{-ix} , xe^{-ix} ; $e^{(5+6i)x}$, $e^{(5-6i)x}$

Соответствующая вещественная ФСР имеет вид

1,
$$x$$
, x^2 ; e^{3x} , xe^{3x} ; e^{4x} ; $\cos x$, $x\cos x$, $\sin x$, $x\sin x$; $e^{5x}\cos 6x$, $e^{5x}\sin 6x$.

§ 8. Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами и правой частью специального вида

$$Ly = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x)$$
(1)

$$Ly = 0 (2)$$

 $a_1,\ldots a_n\in\mathbb{R}$,

 $P(\lambda)$ характеристический многочлен дифференциального оператора L.

10. Предложение 1. $f(x) = M_l(x)e^{\lambda_0 x}$, M_l — многочлен степени l, λ_0 — комплексное число. Тогда 1) Если $P(\lambda_0) \neq 0$, то д.у. (1) имеет решение вида

$$y = \psi(x) = S_l(x)e^{\lambda_0 x}$$
, где S_l — многочлен степени l .

2) Если λ_0 — корень кратности k для $P(\lambda)$, то решение можно найти в виде

$$y = \psi(x) = x^k S_t(x) e^{\lambda_0 x}$$

Доказательство

1) Дифференциальный оператор L переводит функции $x^j e^{\lambda_0 x}$ в

$$\begin{split} L\Big(x^{j}e^{\lambda_{0}x}\Big) &= P\Big(\lambda_{0}\Big)x^{j}e^{\lambda_{0}x} + P'\Big(\lambda_{0}\Big)C_{j}^{1}x^{j-1}e^{\lambda_{0}x} + \dots + P^{(j)}\Big(\lambda_{0}\Big)C_{j}^{j}e^{\lambda_{0}x} \,, \text{ если } j \leq n \,, \text{ и в} \\ L\Big(x^{j}e^{\lambda_{0}x}\Big) &= P\Big(\lambda_{0}\Big)x^{j}e^{\lambda_{0}x} + P'\Big(\lambda_{0}\Big)C_{j}^{1}x^{j-1}e^{\lambda_{0}x} + \dots + P^{(n)}\Big(\lambda_{0}\Big)C_{j}^{n}x^{j-n}e^{\lambda_{0}x} \,, \text{ если } j \geq n \,. \end{split}$$

Образы функций $e^{\lambda_0 x}$, $xe^{\lambda_0 x}$, ..., $x^l e^{\lambda_0 x}$ выражаются через базисные элементы $e^{\lambda_0 x}$, $xe^{\lambda_0 x}$, ..., $x^l e^{\lambda_0 x}$ пространства функций вида $f(x) = M_l(x)e^{\lambda_0 x}$ посредством треугольной матрицы с ненулевыми диагональными элементами $P(\lambda_0) \neq 0$. Следовательно, эти образы тоже образуют базис и любая функция вида $f(x) = M_l(x)e^{\lambda_0 x}$ является их линейной комбинацией:

$$f(x) = A_0 L(e^{\lambda_0 x}) + A_1 L(xe^{\lambda_0 x}) + \dots + A_l L(x^l e^{\lambda_0 x}) = L(S_l(x)e^{\lambda_0 x}),$$
 где
$$S_l(x) = A_0 + A_1 x + \dots + A_l x^l.$$

2) Если λ_0 — корень кратности k для $P(\lambda)$, мы рассмотрим образы функций $x^k e^{\lambda_0 x}, \, x^{k+l} e^{\lambda_0 x}, \dots, \, x^{k+l} e^{\lambda_0 x}$. Можем написать формулы

$$\begin{split} L\Big(x^{k+j}e^{\lambda_0x}\Big) &= P^{(k)}\Big(\lambda_0\Big)C_{k+j}^kx^je^{\lambda_0x} + P^{(k+1)}\Big(\lambda_0\Big)C_{k+j}^{k+l}x^{j-l}e^{\lambda_0x} + \dots + P^{(k+j)}\Big(\lambda_0\Big)C_{k+j}^{k+j}e^{\lambda_0x}\,, \text{ если } k+j \leq n\,, \text{ и} \\ L\Big(x^{k+j}e^{\lambda_0x}\Big) &= P^{(k)}\Big(\lambda_0\Big)C_{k+j}^kx^je^{\lambda_0x} + P^{(k+1)}\Big(\lambda_0\Big)C_{k+j}^{k+l}x^{j-l}e^{\lambda_0x} + \dots + P^{(n)}\Big(\lambda_0\Big)C_{k+j}^nx^{k+j-n}e^{\lambda_0x}\,, \text{ если } \\ k+j \geq n\,. \end{split}$$

Система образов $x^k e^{\lambda_0 x}$, $x^{k+l} e^{\lambda_0 x}$,..., $x^{k+l} e^{\lambda_0 x}$ опять формируется из базиса $e^{\lambda_0 x}$, $x e^{\lambda_0 x}$,..., $x^l e^{\lambda_0 x}$ с помощью треугольной матрицы с ненулевыми диагональными элементами.

20. Предложение 2. Мы рассматриваем д.у. (1) с вещественными коэффициентами. Комплексная функция $\psi = \psi_1 + i\psi_2$ — решение д.у. $Ly = f = f_1 + if_2$ в том и только в том случае, если ψ_1 — решение $Ly = f_1$, ψ_2 — решение $Ly = f_2$.

Доказательство

Поскольку уравнение имеет вещественные коэффициенты, то для вещественных функций $\psi_{\scriptscriptstyle 1.2}$ функции $L\psi_{\scriptscriptstyle 1.2}$ вещественны. Таким образом,

 ψ — решение д.у. $Ly=0 \Leftrightarrow L\psi=f \Leftrightarrow L\psi_1+iL\psi_2=f_1+if_2 \Leftrightarrow \begin{cases} L\psi_1=f_1\\ L\psi_2=f_2 \end{cases} \Leftrightarrow \psi_1$ — решение $Ly=f_1,\ \psi_2$ — решение $Ly=f_2$.

3°. Предложение 3. $f(x) = e^{\alpha x} (M_l(x) \cos \beta x + N_m(x) \sin \beta x)$, M_l — многочлен степени l, N_m — многочлен степени m, α , $\beta \in \mathbb{R}$, $\beta \neq 0$.

Тогда 1) если $P(\alpha \pm i\beta) \neq 0$, то д.у. (1) имеет решение вида

$$y = \psi(x) = e^{\alpha x} \left(S_{\nu}(x) \cos \beta x + T_{\nu}(x) \sin \beta x \right),$$

 S_{ν} , T_{ν} — многочлены степени $\nu = \max\{l, m\}$,

2) если каждое из чисел $\alpha \pm i \beta$ является корнем кратности k , то решение следует искать в виде

$$y = \psi(x) = x^{k} e^{\alpha x} \left(S_{\nu}(x) \cos \beta x + T_{\nu}(x) \sin \beta x \right).$$

Доказательство

Рассмотрим уравнение

$$Ly = (M_{l}(x) - iN_{m}(x))e^{(\alpha+i\beta)x}.$$

По Предложению 1 оно имеет решение вида

$$\psi(x) = x^k U_{\nu}(x) e^{(\alpha+i\beta)x} = x^k \left(S_{\nu}(x) - iT_{\nu}(x) \right) e^{\alpha x} \left(\cos \beta x + i \sin \beta x \right).$$

По Предложению 2 функция

$$\psi_1(x) = \text{Re}\psi(x) = x^k e^{\alpha x} \left(S_{\nu}(x) \cos \beta x + T_{\nu}(x) \sin \beta x \right)$$

является решением уравнения с правой частью

$$f(x) = e^{\alpha x} (M_1(x) \cos \beta x + N_m(x) \sin \beta x).$$

Примеры

1)
$$y'' - 2y' + y = e^{2x} + e^x$$
, $y = e^{2x} + \frac{1}{2}x^2e^x$

2)
$$y'' + a^2 y = \cos \omega x$$
, $y(0) = 0$, $y'(0) = 0$.

Решение ищем в виде $y = A\cos ax + B\sin ax$. подстановка в уравнение дает

$$(a^2 - \omega^2) A \cos \omega x + (a^2 - \omega^2) B \sin \omega x = \cos \omega x$$

Если $a \neq \omega$, следует взять $A = \frac{1}{a^2 - \omega^2}$, B = 0. Общее решение дается формулой

$$y = \frac{1}{a^2 - \omega^2} \cos \omega x + C_1 \cos \alpha x + C_2 \sin \alpha x$$
, а решение задачи Коши — формулой

$$y = \frac{1}{a^2 - \omega^2} (\cos \omega x - \cos ax)$$
. На рисунке приведены графики для $a = 4$, $\omega = 2$ (синий) и $a = 4$, $\omega = 3$ (желтый).

$$\frac{1}{4^{2}-2^{2}}(\cos 2x - \cos 4x), \frac{1}{4^{2}-3^{2}}(\cos 3x - \cos 4x)$$

Если $a=\omega$, решение следует искать в виде $y=x\big(A\cos ax+B\sin ax\big)$. В таком случае $y''=-x\big(Aa^2\cos ax+Ba^2\sin ax\big)+2\big(-Aa\sin ax+Ba\cos ax\big)$. Подстановка в уравнение дает $2\big(-Aa\sin ax+Ba\cos ax\big)=\cos ax$, A=0, $B=\frac{1}{2a}$. Функция $y=\frac{x}{2a}\sin ax$ является решением задачи Коши. Заметим, что $\frac{1}{a^2-\omega^2}\big(\cos \omega x-\cos ax\big)\underset{\omega\to a}{\longrightarrow}\frac{x}{2a}\sin ax$, решение непрерывно зависит от параметра. На рисунке приведен график функции $y=\frac{x}{2a}\sin ax$ при a=4.

