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Кратные криволинейные и поверхностные интегралы 

Глава I. Двойной интеграл 

§ 1. Интеграл Римана на прямоугольнике 

10.    , ,a b c d =   — прямоугольник, ( )( )b a d c = − −  — площадь (мера) 

прямоугольника. 

Предложение. Мера прямоугольника 

1) однородна: если    , ,a b c d     =  , то 2

   =  ; 

2) инвариантна: ( )0x + =   

3) аддитивна: если 
1

k

i

i=

 =   и прямоугольники 1, , k   попарно не имеют общих 

внутренних точек, то 
1

k

i

i

 
=

 =   

4) Если 
1

k

i

i=

   , то 
1

k

i

i

 
=

   . 

Для клеточной фигуры, составленной из прямоугольников, попарно не имеющих общих 

внутренних точек, площадью называется сумма площадей составляющих прямоугольников. 

20. Разбиение прямоугольника. 

   , ,a b c d =   — прямоугольник, 0 1 ka x x x b=    = , 0 1 lc y y y d=    =  — 

разбиения отрезков. Прямоугольники  1 1, ,ij i i j ja a b b− −
  =     образуют разбиение   

прямоугольника  . 

Занумеруем элементы разбиения одним индексом:  1, , m =    

Число ( )maxdiam i
i

 =   называется рангом (мелкостью) разбиения  . 

Набор точек  1, , m  =  , i i   называется выборкой из разбиения  . 

30. Интегральная сумма. 

Пусть f  — вещественная ограниченная функция на прямоугольнике  ,   — разбиение,   

— выборка. ( ) ( )
1

, ,
m

i i

i

f f    
=

=   — интегральная сумма. 

40. Интеграл Римана. Пусть f  — вещественная ограниченная функция на прямоугольнике 

 . Число I  называется двойным интегралом Римана функции f  по прямоугольнику  , 

если 

 ( )0 0 , ,I f             −  . 

Представляется естественным сказать, что двойной интеграл — это предел ( )
0

lim , ,f


  
→

 

интегральных сумм. 

Для двойного интеграла используются обозначения  

 ( ),f x y dxdy


 , ( )f u du


 , f


 . 

Если функция f  имеет интеграл, она называется интегрируемой. 
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§ 2. Суммы Дарбу. 

10. Определение. Пусть f  — вещественная ограниченная функция на прямоугольнике  , 

 1, , m =    — разбиение прямоугольника ; 

 ( ) ( )inf , sup , 1, ,i i i im f M f i m=  =  =  . 

 
1

m

i i

i

s m 
=

=   — нижняя сумма Дарбу, 

 
1

m

i i

i

S M 
=

=   — верхняя сумма Дарбу. 

20. Свойства сумм Дарбу. 

1) ( ), ,s f S     , ( ) ( )inf , , , sup , ,s f S f 
 

     = = . 

2) Если 2  — измельчение 1 , то 

 
1 2 2 1
s s S S      . 

3) Для любых разбиений 1 2,   

 
1 2
s S  . 

30. Определение. 

 
* supI s



=  — нижний интеграл, 

 * infI S


=  — верхний интеграл Дарбу. 

40. Лемма Дарбу. 

 *

*
0 0

lim , limI s I S
 

 
 → →

= = . 

Доказательство. 

1) Расстояние между множествами. 

Пусть 2,A B   . Число ( ) ( )
,

, inf ,
x A y B

A B x y 
 

=  называется расстоянием между множествами 

,A B . 

Если ( ), 0A B  , то множества ,A B  не пересекаются. Если ,A B  не пересекаются, A  — 

компакт, B  замкнуто, то ( ), 0A B  . 

Пусть ( ), 0A B =  , ( )diam C  , A C  . Тогда B C = . 

2) Возьмем произвольное 0  . Подберем разбиение  0 1, , m =   , для которого 

0

*

2
S I


 + . 

Пусть ( )0, 1  , 
i

  — прямоугольник, подобный i  с коэффициентом подобия a  и 

центром подобия в центре прямоугольника. 

Положим ( )supM f=   и подберем   так, чтобы 

 
1 4

m

i

i M

 
 

=

   − . 

Если положить 
1

m

i

i

 

=

 =  , то последнее неравенство превратится в ( )\
4M

 
    . 



 3 

Подберем такое 0  , что ( ), \ 0i i

       при всех 1, ,i m=  . 

Пусть  1, , le e =   — разбиение прямоугольника  , для которого   . Если при 

некоторых ,i j  окажется, что 
j ie   , то 

j ie   . Разбиение   состоит из "хороших" 

множеств (
j ie   ) и "плохих" ( \je

  ). 

Образуем разбиение  1 1, , pu u =   — общее измельчение для 0 ,  . Тогда 

1 0 1

*,
2

S S S I  


  + . В состав 1  входят все "хорошие" прямоугольники из  . Будем считать, 

что 1, , le e  — хорошие множества, а 1, ,l le e+   — плохие; 1 1, , l lu e u e = = , а 
1, ,l pu u+   

получены измельчением плохих множеств 1, ,l le e+  . При вычислении 
1

S S −  суммирование 

следует распространить на "плохие" прямоугольники: 

 ( )
1

1 1 1 1

2 \
2j j

p pl l

e j u j j j

j l j l j l j l

S S M e M u M e u M 

 


    

   = + = + = + = +

 
− = −  +     

 
    . 

Мы приходим к выводу, что  

 
1

*,
2

S S S I  


 +  + . 

Для произвольного 0   мы нашли такое 0  , что для всех разбиен6ий  , 

удовлетворяющих условию   , справедливо неравенство * *I S I   + . Это и означает, 

что *

0
limI S



 →

= . Лемма доказана. 

50. Теорема 1. Критерий интегрируемости Дарбу. 

Пусть f  — вещественная ограниченная функция на прямоугольнике  . 

Тогда равносильны условия: 

1) f  интегрируема; 

2) 
0
0S s


 

 →
− →  (т.е. 0 0 S s            −  ); 

3) 0 S s      −  ; 

4) *

*I I= . 

Доказательство. 

Доказательство проведем по схеме 1 2 3 4 1    . 

Пусть функция f  интегрируема, I  — ее интеграл. Возьмем произвольное 0  . Опираясь 

на определение интеграла, найдем такое 0  , что ( ), ,I f I    −   + , если только 

  . Для таких разбиений получаем условия 

 , 2I s S I S s     −    + −  . 

Условие 2) установлено. 

Из условия 2) условие 3) получается очевидным образом. 

Пусть выполнено условие 3). Для произвольного 0   подберем разбиение  , для которого 

S s  −  . Теперь *

*I I S s  −  −  , так что *

*I I . 

Наконец, при выполнении условия 4) положим *

*I I I= = . Поскольку при любых ,   

выполняется неравенство 

 ( ), ,s f S     , 
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а по лемме Дарбу 
0

,S s I


 
 →
→  , то по теореме о милиционерах получается соотношение 

 ( )
0

, ,f I


  
→
→ , 

I  — интеграл функции f , f  интегрируема. 

§ 3. Интегрируемость непрерывной функции 

Теорема 1. Пусть функция f  непрерывна на прямоугольнике  . 

Тогда f  интегрируема. 

Доказательство. 

Функция f  равномерно непрерывна на прямоугольнике . Положим ( )max
x

M f x


= . 

Возьмем произвольное 0  . Подберем такое 0  , что 

 ( ) ( ) ( ),x y f x f y


 


  − 


. 

Пусть  1, , m =    — разбиение, для которого   . Тогда 
i iM m




− 


 и  

 ( )
1 1

m m

i i i i

i i

S s M m 

 
   

 = =

− = −    =  =
 

  . 

Итак, 
0
0S s


 

 →
− → , функция f  интегрируема. 

§ 4. Критерий Лебега 

10. Определение. Множество 2e   есть множество меры нуль в смысле Лебега, если для 

любого 0   можно указать систему прямоугольников  
1k k



=
 , такую что 

1

k

k

e


=

   и 

1

k

k

 


=

  . 

Заметим, что для компактных множеств меры нуль систему прямоугольников можно выбрать 

конечной. (Если 
1 4

k

k






=

   и 
1

k

k

e


=

  , то 
( )2

1

k

k

e Int


=

  , 
( ) ( )2 2

1 1

,
m m

k k

k k

e Int e
= =

     и 

( )2

1 1

4 4
4

k k

k k


  

 

= =

 =   =  ). 

20. 1) Конечные и счетные множества являются множествами меры нуль. 

2) Подмножество множества меры нуль является множеством меры нуль. 

3) Объединение не более чем счетного числа множеств меры нуль — множество меры нуль. 

4) Невырожденный прямоугольник не является множеством меры нуль. 

5) Множество точек с рациональными координатами — множество меры нуль. 

6) График непрерывной функции одной переменной — множество меры нуль. 

30. Принято говорить, что некоторое свойство имеет место почти везде (п.в.) на множестве 

E , если существует множество e  меры нуль, т.ч. это свойство имеет место на \E e . 

 

40. Теорема 1. Критерий интегрируемости Лебега. 

Для того, чтобы ограниченная функция была интегрируемой на прямоугольнике, необходимо 

и достаточно, чтобы функция была непрерывной п.в. 

Теорему примем без доказательства. 
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§ 5. Интеграл по множеству 

10. Пусть E  — ограниченное множество; f  — ограниченная функция, определенная по 

крайней мере на множестве E . Подберем прямоугольник E  . Можно считать, что f  

определена на всем прямоугольнике   (в противном случае доопределим функцию нулем). 

Если функция Ef   интегрируема на прямоугольнике  , то назовем функцию f  

интегрируемой по множеству E  и положим 

 ( ) ( ) ( ), , ,E

E

f x y dxdy f x y x y dxdy


=  . 

Здесь E  — характеристическая функция (индикатор) множества E , 

 ( )
( )

( )

1, ,
,

0, ,
E

x y E
x y

x y E



= 



 

Замечание. Определение корректно, выбор прямоугольника не влияет на интегрируемость и 

значение интеграла. 

20. Мера Жордана. Если существует 
E

dxdy , множество E  называется измеримым по 

Жордану, а число  

 
E

E = 1  

называется мерой Жордана или площадью множества E . 

Если E  , то EE 


=  . Точки разрыва функции E  — это граничные точки множества 

E . Множество E  измеримо в том и только в том случае, если его граница E  есть 

множество меры нуль. 

Операции объединения, пересечения, вычитания сохраняют измеримость. 

E  — предел сумм Дарбу функции E . Пусть   — разбиение прямоугольника, тогда s  — 

сумма площадей прямоугольников, содержащихся в E , S  — сумма площадей 

прямоугольников, имеющих непустое пересечение с E . s  — площадь вписанного в E , а S  

— площадь описанного около E  прямоугольника. E  — общий предел площадей 

вписанных и описанных многоугольников. Таким образом, новое определение площади 

(
E

dxdy ) равносильно ранее принятому. 

30. В дальнейшем интегрирование ведется по измеримым множествам. В соответствии с 

критерием Лебега функция интегрируема на измеримом множестве в том и только в том 

случае, если она п.в. непрерывна. 

40. Пусть f  интегрируема на измеримом множестве E , I  — интеграл. Для разбиения 

 1, , me e =   — множества E  на измеримые подмножества, и выборки  1, , m  =   

рассмотрим интегральную сумму 

 ( ) ( )
1

, ,
m

i i

i

f f e    
=

= . 

Можно показать, что интеграл равен пределу интегральных сумм. 

§ 6. Общие свойства интеграла 

10. Линейность 
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Теорема 1. ,f g  интегрируемы на множестве E . h f g = + . 

Тогда h  интегрируема, 

 
E E E

h f g = +   . (1) 

Доказательство. Пусть E  ,   — разбиение,   — выборка, 

 ( ) ( ) ( )
0

, , , , , ,E E E

E E

h f g f g


             
→

= + → +  . 

Замечания 

1) Если f  интегрируема и равна нулю п.в. на E , то 0
E

f =  ( ( ), , 0f      = , 

предельный переход дает равенство нулю интеграла). 

2) Если ,f g  интегрируемы и ( ) ( )f x g x=  п.в. на E , то 
E E

f g=  . 

20. Аддитивность. 

Теорема 2. Пусть f  — ограниченная функция на 1 2E E E=  , 1 2,E E  измеримы. 

Тогда 

1) f  интегрируема на E    f  интегрируема на 1 2,E E ; 

2) при условии ( )1 2 0E E  =  имеет место равенство 

 

1 2E E E

f f f= +   . (2) 

Доказательство. 1) Следует из критерия Лебега. 

2) Поскольку 
1 2 1 2E E E E E    = + − , то 

 
1 2 1 2

1 2

E E E E E

E E E

f f f f f f f    

   

= = + − = +        

( ( )1 2 0E E  = , 
1 2

0E Ef   =  п.в., 
1 2

0E Ef  



= ). 

Следствие. Аддитивность меры Жордана. 

1 2,E E  измеримы, ( )1 2 0E E  = . 

Тогда ( )1 2 1 2E E E E   = + . 

30. Монотонность интеграла. 

Теорема 3. 

1) 0f  , интегрируема на E . 

Тогда 

 0
E

f  . (3) 

2) f g  интегрируемы на E . 

Тогда 

 
E E

f g  . (4) 

Доказательство. 

1) E  ,   =  , 0s  , 0
E

f s  . 

2) 0h g f= −  , 
E E E E

g f h f= +     . 
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Упражнение 0f  , интегрируема, 0
E

f = . Тогда ( ) 0f x =  п.в. 

40. Оценки интеграла. 

1) f  интегрируема на измеримом множестве E . 

 ( )x E m f x M    . (5) 

Тогда 

 
E

m E f M E   . (6) 

2) f  интегрируема на измеримом множестве E . 

Тогда 

 
E E

f f  . (7) 

3) f  интегрируема на измеримом множестве E . 

 ( )x E f x M   . (8) 

Тогда 

 
E

f M E . (9) 

50. Теорема 4 О среднем. 

f  непрерывна на измеримом линейно связном множестве E . 

Тогда 

 ( )
E

E I f f E    = = . 

Доказательство. 

Положим ( ) ( )inf , supm f E M f E= = . Тогда 

 
E

m E f M E   , 

C m C M I C E   = . По теореме Коши о промежуточном значении непрерывной 

функции ( )E C f   = . 

Обобщенная теорема о среднем. 

Пусть 0g  , интегрируема, f  удовлетворяет условиям теоремы 4. 

Тогда 

 ( )
E E

E fg f g   =   

§ 7. Сведение двойного интеграла к повторному 

10. Интегрирование по прямоугольнику 

f  — интегрируемая функция на прямоугольнике    , ,a b c d =  , 

 ( ),I f x y dxdy


=  . 

Определим функцию F  на  ,a b : 

 ( ) ( ),
d

c

F x f x y dy=  . (1) 
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Если интеграл (1) не существует при некотором x , в качестве ( )F x  возьмем любое число, 

лежащее между нижним и верхним интегралами. 

Теорема 1. F  интегрируема на  ,a b , 

 ( )
b

a

I F x dx=  , (2) 

т.е. 

 ( ) ( ), ,

b d

a c

f x y dxdy dx f x y dy


=   . (3) 

В (3) справа стоит повторный интеграл. 

Доказательство. 

Возьмем произвольное 0   и подберем такое 0  , что 

 S s      −  . 

Пусть 0 1:x ka x x x b =    =  — разбиение отрезка  ,a b  с рангом 
x

  . Подберем 

разбиение 
0 1:y lc y y y d =    = , настолько мелкое, что разбиение  

   1 1
1, , ; 1, ,

, ,ij i i j j
i k j l

x x y y − −
= =

 =  =    
 

имеет ранг   . 

Рассмотрим интегральную сумму функции F : 

 

( ) ( ) ( ) ( )
1

1 1 1 1

1 1 1 1

, , , ,

.

j

j

ydk k k l

x x i i i i i i

i i i jc y

k l k l

ij j i ij ij

i j i j

F F x f y dy x f y dy x

M y x M S

     



−
= = = =

= = = =

=  =  =  

   =  =

   

 

 

Аналогично получается неравенство 

 ( ), ,x xF s    . 

Итак, 

 ( ), ,x xI s F S I     −     + , 

F  интегрируема на  ,a b , ( )
b

a

I F x dx=  . 

Замечания. 

1) Если ( ),if y  не является интегрируемой, то ( )iF   не превосходит верхнего интеграла, а 

верхний интеграл не превосходит верхней суммы Дарбу: 

 ( ) ( )
1 ,1 1

sup ,
j j

l l

i i j ij j
y y yj j

F f y y M y 
−

 = = 

     . 

2) Если f  интегрируема на  , то ( ) ( ),
d

c

F x f x y dy=   существует при п.в.  ,x a b . 

Действительно, пользуясь нижним и верхним интегралами, построим 1 2F F . Тогда  

 ( ) ( )1 2

b b

a a

F x dx I F x dx= =   

и 1 2F F=  п.в. 
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20. Интегрирование по криволинейной трапеции 

Теорема 2. ,   непрерывны на  ,a b ,   , 

 ( ) ( ) ( ) , | ,E x y a x b x y x =     ; 

f  — интегрируема на E . 

Тогда 

 ( ) ( )
( )

( )

, ,

xb

E a x

f x y dxdy dx f x y dy





=   . (4) 

Доказательство. 

Подберем прямоугольник 

    , ,a b c d E =   . 

Теперь 

 ( ) ( ) ( )
( )

( )

, , ,

xb d b

E E

E a c a x

f f dx f x y x y dy dx f x y dy





 


= = =       

Если f = 1 , мы получаем знакомую формулу 

 ( ) ( )( )
b

a

E x x dx  = −  (5) 

вычисления площади криволинейной трапеции. 

Пример.  

 ( ) ( ) ( ) ( ) ( ) ( )
: ,

b d b d

E a x b c y d a c a c

f x g y dxdy f x g y dy dx f x dx g y dy
   

 
= = 

 
     . 

В рассмотренной ситуации интегрирования произведения функций одной переменной по 

прямоугольнику двойной интеграл распался в произведение однократных интегралов. 

§ 8. Замена переменных в двойном интеграле 

10. Пусть :G G →  — диффеоморфизм области G   на область G , 

 
( )

( )

, ,
:

, .

x u v

y u v





=
 

=

 

J  — якобиан отображения  : 

 
u v

J J

u v

 

 


 

 
= =

 

 

, 

J  не обращается в нуль ни в одной точке. 

Лемма 1. 

1) E  — множество меры нуль. 

Тогда ( )E  — множество меры нуль. 

2) E  — компакт нулевой площади. 

Тогда ( )E  — компакт нулевой площади. 

3) E  — измеримый компакт. 

Тогда ( )E  — измеримый компакт. 
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Доказательство. 

1) Область G  можно представить в виде объединения счетного числа замкнутых 

прямоугольников. Объединение счетного набора множеств меры нуль есть множество меры 

нуль. Поэтому достаточно доказать утверждение для множества E , лежащего в замкнутом 

прямоугольнике G   . 

Поскольку   непрерывно дифференцируемо, то 

 ( ) ( )( ) ( )1 2 1 2 1 2, , ,M w w w w M w w         

Возьмем произвольное 0   и подберем покрытие  
1i i



=
  множества E  квадратами, такое 

что 
2

1 2
i

i M






=

  . 

Множества ( )i   покрывают ( )E E=  . Пусть iw  — центры квадратов i
 , ( )i iz w=  , i  

— квадрат с центром iz , полученный увеличением линейных размеров i
  в 2M  раз. 

Тогда ( )i i
    , i

i
E   , 

1

i

i

 


=

  , E  — множество меры нуль. 

2) ( )E  — компакт меры нуль, поэтому ( )( ) 0E  = . 

3) E  измеримо, ( ) 0E  = , ( )( ) 0E   = , но ( )E E =   , так что ( ) 0E  = , E  

измеримо. 

Следствие. Если f  интегрируема на измеримом компакте E , то функция f J  

интегрируема на E . 

20. Теорема 1. Пусть при перечисленных выше условиях E G  — измеримый компакт, 

( )E E=  , f  — интегрируемая функция на E . 

Тогда f J  интегрируема на E  и 

 ( ) ( ) ( )( ) ( ), , , , ,
E E

f x y dxdy f u v u v J u v dudv 


=  . (1) 

Доказательство.  

Случай простейшего диффеоморфизма. 

Диффеоморфизм   назовем простейшим, если он воздействует только на одну из координат, 

т.е. описывается системой уравнений 

 
( )

,
0

, ,

x u

y u v v





= 


= 
 или 

( ), ,
0

,

x u v

uy v

 = 


=
 

Лемма 2. Формула (1) справедлива для простейшего диффеоморфизма. 

Доказательство. 

Пусть    1 1 1 1, ,E a b c d =   — прямоугольник. Для определенности, считаем, что 0
v





, 

 
( )

,
:

, ,

x u

y u v

=
 

=
 тогда 

1 0

J
v

u v


 


= = 


 

, 

E  — криволинейная трапеция ( ) ( )1 1 1 1, , ,a x b x c y x d       

Получаются следующие равенства 



 11 

 ( ) ( )
( )

( )

( )( ) ( )( ) ( )
11 1 1

1 1 1 1

,

,

, , , , , , ,

x db b d

E a x c a c E

f x y dxdy dx f x y dy dx f x x v dv f u u v J u v dudv
v






 




= = =

      . 

Множество E  более сложной структуры разобьем на прямоугольники, запишем 

предыдущую формулу для каждого прямоугольника и на основе свойства аддитивности 

получим формулу для всего множества E . 

Лемма 3. Если формула (1) справедлива для 1  и 2 , то она справедлива и для 

диффеоморфизма 1 2 =   . 

Доказательство.  

 

( ) ( )( ) ( )

( )( )( ) ( )( ) ( ) ( )( ) ( )

1 1

1 2 1 2 2

, , ,

, , , , , ,

E E

E E

f x y dxdy f u v J u v dudv

f s t J s t J s t dsdt f s t J s t dsdt



 

=  =

=    = 

 

 
 

что и требовалось доказать. 

Лемма 4. Локальное разложение диффеоморфизма в композицию простейших. 

( )0 0,u v  V  — окрестность точки ( )0 0,u v , в пределах которой 1 2 =   , где 1 2,  — 

простейшие диффеоморфизмы. 

Доказательство.  

Можно считать, что 0
u





. 

Определим отображение 2  формулами  

 
( ), ,

,

s u v

t v

=

=

 

тогда 
2

0J
u





= 


. 

По теореме об обратном отображении 2  обратимо на некоторой окрестности V  точки 

( )0 0,u v . Положим 1

1 2

− =  , тогда 1 2 =   , 1 2,   — простейшие. 

Завершение доказательства. 

Для каждой точки компакта E  подберем круг, на котором диффеоморфизм разлагается в 

композицию простейших. Из системы кругов, вдвое меньшего радиуса, выделим конечное 

подпокрытие компакта. Пусть   — наименьший из радиусов малых кругов. Можно считать, 

что  -окрестность множества E  лежит в G . 

Любое множество диаметра меньше  , пересекающееся с E , лежит в множестве, где 

возможно разложение диффеоморфизма. 

Покроем E  прямоугольниками 1 2, , , m
     , ( )idiam   . 

 
( )1 1

i i

m m

i iE E E E

f J f J f f
= =     

 =   = =     . 

Дополнение. Формула (1) остается справедливой если условия, наложенные на отображение 

  нарушаются на множестве меры нуль, если существуют множества ,S G S G    меры 

нуль, такие что отображение : \ \G S G S  →  удовлетворяет условиям Теоремы 1. 

Примеры. 

1) 
,

,

x au bv

y cu dv

= +


= +
 

a b
J

c d
= . 
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2) Переход к полярным координатам. 

cos ,

sin ,

x r

y r





=


=
 J r= . 

( )
2 2

1

2 1

2 2 2 3 3

:0 1,0 2 0 0: 1

cos1 1 1 1 1
2

sin2 2 2 2 4 4
E E rE x y

x r
x dxdy x y dxdy r drd d r dr

y r



 

 
  


   + 

= 
= + = = = = = 

= 
    

.3) Интеграл Эйлера-Пуассона 
2xI e dx 

+

−

−

= = . 

2 2 2 2 2 2 2

2

2

2

0

0 0 0
0 2

1
2 |
2

x y x y r r r

r

I e dx e dy e dxdy e rdrd d e rdr e



 

   
+ + +

− − − − − − − +

− −  +
 

= = = = = − =     


. 

4) 4 2

:1 2, 1 4
y

E xy
x

I x y dxdy

   

=  . Выполним замену переменных по формулам 

,

.

u xy

y
v

x

=



=


 Множество 

E  преобразуется в прямоугольник 1 :1 2, 1 4E u v    ,  

 1

2

2 21

y x
y

J vy
x

x x

− = = =
−

. 

Таким образом, 

 

1

2 4

3 3 4 2 4

1 12

1 1

1 1 1 1 1 1 1 15 3 45
| |

2 2 2 4 2 4 4 32
E

dv
I u dudv u du u

v v v v
= = = − = =   . 

 

 


